L’influenza che non passa mai

L’influenza che non passa mai

Introduzione

In tre miei articoli precedenti (qui, qui e qui) – a commento del recente lavoro pubblicato da Fluge e colleghi (Fluge O et al. 2016) – ho descritto uno scenario in cui una funzione ridotta dell’enzima piruvato deidrogenasi (PDH) nei pazienti ME/CFS porta a una inefficiente sintesi di energia in seno al ciclo del TCA. La ridotta funzione del PDH è stata dedotta dalla presenza di un fenomeno di catabolismo degli amminoacidi, e dalla sovra espressione degli enzimi piruvato deidrogenasi kinasi (PDK), in particolare le isoforme 1, 2, 4. Ora la domanda è: cosa causa questa alterazione metabolica? Gli Autori, sulla scorta del loro successo terapeutico con il Rituximab, ipotizzano che un autoanticorpo possa – in alcuni pazienti – attivare o disattivare dei circuiti legati alla regolazione del metabolismo energetico. In quanto segue propongo uno scenario alternativo, basato su uno studio su topi con l’influenza.

Primo atto: influenza A e piruvato deidrogenasi

Nel 2014 un gruppo giapponese (Yamane K et al. 2014) ha inoculato il virus della influenza A (IAV) in topi da laboratorio, e nei 7 giorni successivi ha condotto uno studio sulle cavie malcapitate, simile a quello eseguito da Fluge e Mella sui pazienti ME/CFS, se non per il fatto che i topi sono stati sacrificati in modo da poter effettuare le misure direttamente nei tessuti. Come si vede in figura 1.A, l’attività del piruvato deidrogenasi si riduce col passare dei giorni nei vari tessuti esaminati, con la sola eccezione del cervello. Contestualmente (figura 1.B) anche il livello di ATP scende (ovunque, tranne che nel cervello). Questa prima parte dell’esperimento si può considerare equivalente alla prima parte dello studio di Fluge e Mella, quella che ho discusso qui. Cambia il tipo di misure effettuate, ma il risultato è lo stesso: il metabolismo energetico è depresso e si ha una perdita di attività del piruvato deidrogenasi.

pdh-e-atp
Figura 1. Attività dell’enzima piruvato deidrogenasi in vari tessuti (A) e concentrazione di ATP nei medesimi tessuti (B).

Secondo atto: piruvato deidrogenasi kinasi, il solito sospetto

Esattamente come Fluge e Mella, anche i ricercatori giapponesi si sono chiesti se una espressione genica insolitamente alta degli enzimi piruvato deidrogenasi kinasi (ce ne sono quattro, indicati PDK1, PDK2…) potesse essere responsabile della ridotta attività del piruvato deidrogenasi. Infatti questi quattro enzimi hanno proprio la funzione di inibire il pirvato deidrogenasi. Come si vede in figura 2, il PDK4 aumenta rapidamente col passare dei giorni sia nel cuore, che nei polmoni, così come nel fegato e nei muscoli scheletrici.

PDK4.png
Figure 2. Espressione del PDK4 in vari tessuti, in funzione dei giorni contati a partire dal momento in cui è stato inoculato il virus dell’influenza.

Questo secondo esperimento è simile agli esperimenti sulla espressione genica nelle cellule mononucleari del sangue periferico, effettuati dal gruppo di Fluge e Mella sui pazienti ME/CFS (qui). Anche in quel caso si è trovata una sovra espressione del PDK4, ma anche del PDK1 e 2, che invece nei topi sono normali. Comunque esiste una sovrapponibilità fra i due risultati.

Uomini e topi

In base a quanto visto, durante i primi 7 giorni dalla inoculazione del virus della influenza A, i topi cominciano a sviluppare una disfunzione metabolica simile a quella descritta da Fluge e Mella nei pazienti ME/CFS: un aumento del piruvato deidrogenasi kinasi si associa a una perdita di funzione del piruvato deidrogenasi e a un complessivo decadimento del metabolismo energetico. Questo cosa significa? E’ difficile trarre conclusioni, ma potremmo forse azzardare l’ipotesi che:

  • la alterazione metabolica descritta nella ME/CFS altro non è che quella che si verifica durante una infezione, a partire già dal primo giorno.

Poichè i primi anticorpi (classe IgM) si formano solo una o due settimane dopo l’inizio della infezione, possiamo escludere che le alterazioni osservate nei topi siano da imputare agli anticorpi. Gli stessi autori le attribuiscono a varie citochine (vei figura 3).

immunometabolismo
Figura 3. Il virus della influenza induce la sintesi di citochine che, a loro volta, attivano la sovra espressione di PDK che inibisce il piruvato deidrogenasi.

Questo significa che una possibile ipotesi per il difetto del piruvato deidrogenasi nella ME/CFS può essere semplicemente la presenza di una infezione cronica, in accordo con quanto suggerito da Antony Komaroff, fra gli altri (vedi qui). Ovviamente questa è solo una fra le tante ipotesi possibili.

E il rituximab?

Se gli anticorpi non c’entrano, allora perché il farmaco rituximab – che uccide le cellule B che esprimono il CD20 – ha un effetto terapeutico in più di metà dei pazienti ME/CFS? Questa è un’ottima domanda, se si potesse rispondere alla quale saremmo più vicini alla soluzione. Tuttavia si consideri che le cellule B non sono solo fabbriche di anticorpi, ma sono anche prensentatori di antigeni, produttrici di citochine (Frances E. Lund 2009) e rilasciano DNA mitocondriale (dati non pubblicati, anticipati da Anders Rosén in questo video, minuto 14:16) esattamente come i mastociti (Zhang et al. 2012). Si ritiene che il DNA mtocondriale sia fortemente infiammatorio (infatti assomiglia a quello di un battere) e quindi potrebbe essere la causa di diversi disturbi (Zhang et al. 2012), tra cui anche magari la disregolazione del piruvato deidrogenasi. Quindi l’effetto del rituximab nella ME/CFS non è necessariamente legato alla presenza di autoanticorpi.

Conclusione

Abbiamo visto che l’alterazione metabolica recentemente ipotizzata nella ME/CFS (Fluge O et al. 2016) è presente anche durante i primi 7 giorni di una infezione virale. Quindi il detto comune secondo il quale “la CFS è come una influenza che non passa mai” sembra corretto anche da un punto di vista metabolico, e potrebbe avere un potere descrittivo ben più profondo di quanto si sia potuto immaginare fino ad oggi.

Mitocondri norvegesi, terzo atto: qualcosa nel sangue

Mitocondri norvegesi, terzo atto: qualcosa nel sangue

Per una lettura veloce andare direttamente ai paragrafi 7 e 8.

1.Introduzione

Nei precedenti due articoli (qui e qui) sul lavoro pubblicato da Fluge, Mella e collaboratori (Fluge et al. 2016) abbiamo visto che:

  • qualcosa induce l’espressione di una serie di meccanismi che riducono la funzione del piruvato deidrogenasi, costringendo i pazienti ME/CFS a bruciare amminoacidi al posto dello zucchero. Ma dei sistemi di compenso intervengono per cercare di riportare il metabolismo energetico alla normalità, senza riuscirci. I sistemi di compenso sono diversi fra maschi e femmine, ma il difetto metabolico a monte è lo stesso nei due sessi.

All scopo di individuare la molecola (o le molecole) a cui ricondurre l’origine di questa disfunzione, il gruppo di scienziati ha preparato delle colture di cellule umane provenienti da muscoli scheletrici, e le ha esposte al siero di 12 pazienti ME/CFS e di altrettanti controlli sani. Le colture cellulari sono state poi sotToposte a due tipi di misure:

  1. il livello di consumo di ossigeno (OCR, oxygen consumption rate), che indica il livello di attività dei mitocondri;
  2. il livello di acidificazione dello spazio extracellulare (ECAR, extracellular acidification rate) che è una misura surrogata del livello di acido lattico prodotto.

Entrambi i parametri sono stati misurati sia in presenza di glucosio, che in presenza di amminoacidi. Nel complesso sono state fatte misure in quattro condizioni sperimentali.

2.Primi due esperimenti: amminoacidi e glucosio

Le cellule muscolari a riposo – esposte al siero dei pazienti – e coltivate in presenza di amminoacidi, presentano un consumo di ossigeno maggiore delle cellule esposte al siero di controlli sani (figura1, B.I). Aggiungendo il glucosio (figura 1, B.II), la situazione non cambia: ancora la respirazione delle cellule muscolari esposte al siero dei pazienti è maggiore di quella delle cellule muscolari esposte al siero di controlli sani. La sintesi di acido lattico non differisce fra le cellule esposte a siero di pazienti e cellule esposte a siero di controlli sani (figura 1, D.I e D.II).

coltura celulare 2.jpg
Figura 1. Consumo di ossigeno e nei quattro esperimenti (B) e sintesi di acido lattico (D).

3.Terzo esperimento: blocco dell’enzima ATP sintasi

Il blocco dell’enzima ATP sintasi, il quale si occupa di convertire ADP in ATP alla fine della catena respiratoria, riduce drammaticamente il consumo di ossigeno in entrambe le colture, ma quella con siero di pazienti è meno colpita (figura 1, B.III). Vale la pena ricordare che la subunità beta dell’enzima ATP sintasi è sovra espressa nei pazienti ME/CFS (vedi qui), e questo potrebbe essere legato all’effetto benefico del siero dei pazienti in questo esperimento. La produzione di lattato in questo esperimento è maggiore nelle cellule esposte a siero di pazienti (figura 1, D.III).

4.Quarto esperimento: blocco della catena respiratoria

I ricercatori hanno esposto le colture cellulari a una molecola (la CCCP) che inibisce la catena respiratoria. Come forma di compenso le colture cellulari aumentano drasticamente il consumo di ossigeno ma la coltura esposta al siero ME/CFS consuma più ossigeno (figura 1, B.IV) e produce più lattato (figura 1, D.IV).

coltura celulare 3.jpg
Figura 2. Sottrazioni fra misure effettuate negli esperimenti su coltura cellulare.

5.Sottrazioni

I ricercatori hanno poi effettuato i seguenti calcloli, i cui risltati sono riportati in figura 2:

  • consumo di ossigeno dell’esperimento II meno quello dell’esperimento III (figura 2, E);
  • consumo di ossigeno dell’esperimento IV meno quello dell’esperimento III (figura 2, E);
  • produzione di acido lattico dell’esperimento II meno quello dell’esperimento I (figura 2, F);
  • produzione di acido lattico dell’esperimento III meno quello dell’esperimento II (figura 2, F);
  • produzione di acido lattico dell’esperimento IV meno quello dell’esperimento II (figura 2, F).

6.Cosa ci dicono questi esperimenti?

Non è immediato dedurre il significato di questi esperimenti, almeno per me. Tuttavia possiamo dire quanto segue.

  • Il consumo di ossigeno delle cellule muscolari esposte al siero dei pazienti è maggiore di quello del gruppo di controllo (esperimenti I-IV), e questo è apparentemente in disaccordo con quanto risulta dai test ergosirometrici nella ME/CFS, in cui il consumo di ossigeno sistemico – per watt erogato – è minore nei pazienti (Vanness, 2007), (Snell, 2013).
  • Stressando chimicamente la catena respiratoria (esperimenti III e IV) la produzione di acido lattico aumenta nella coltura esposta a siero di pazienti più di quanto non aumenti nel contollo. Forse questo è il dato più interessante, che potrebbe rispecchiare un blocco nel piruvato deidrogenasi indotto dal siero dei pazienti nella coltura cellulare.

7.Conclusioni

Gli esperimenti in vitro di Fluge e colleghi dimostrano che nel siero dei pazienti ME/CFS è presente un fattore X (non noto) che:

  1. aumenta la capacità delle cellule di consumare ossigeno;
  2. aumenta la produzione di lattato in condizioni di aumentato fabbisogno energetico (simulate in provetta con inibitori della catena respiratoria).

La prima osservazione può indicare – secondo gli autori – la presenza di meccanismi di compenso attivati da messaggeri chimici contenuti nel sangue dei pazienti, che potenziano l’attività mitocondriale. La seconda osservazione sperimentale è in accordo con lo studio di Armstrong, che non rileva un aumento del lattato basale (Armstrong CW et al. 2015), e con osservazioni del gruppo norvegese (non ancora pubblicate) che indicano un aumento significatico di lattato dopo esercizio, rispetto ai controlli sani. L’aumento di lattato a seguito di esercizio è ciò che ci si aspetterebbe in presenza di un blocco del piruvato deidrogenasi. Quindi il fattore X (o i fattori?) contenuto nel siero dei pazienti è responsabile di due azioni, apparentemente opposte: da un lato potenzia i mitocondri, dall’altro fa aumentare la produzione di lattato. Questo potrebbe voler dire che:

  • nel siero dei pazienti è presente sia la causa dell’inibizione del piruvato deidrogenasi, che un fattore di compenso, che cerca di porre rimedio al difetto metabolico.

Questa è solo una delle interpretazioni possibili, ovviamente. Aggiungo che un aumento significativo del lattato dopo attività fisiche blande era stato segnalato in un precedente studio su un solo paziente, realizzato dal paziente stesso (Mark Vink 2015).

8.Un possibile test

Come abbiamo visto, nella ME/CFS il lattato basale sembra normale (Armstrong CW et al. 2015) e lo studio di Fluge e Mella – qui discusso – conferma questa dinamica anche con esperimenti in vitro. Tuttavia, a seguito di stress energetici, la produzione di lattato aumenta più di quanto ci si aspetterebbe normalmente, come già dimostrato da un paziente/ricercatore (Mark Vink 2015) e come evidenziato anche nello studio di Fluge e Mella, in vitro. Allora ho pensato che un possibile test in grado di rilevare questa dinamica metabolica potrebbe essere la misura di lattato e ammonio nel test da sforzo ischemico dell’avambraccio. In questo test viene fatta contrarre ripetutamente una mano del paziente (con una pallina morbida), essendo il flusso sanguigno bloccato con laccio emostatico. Dopo l’esercizio (che dura un minuto), diversi prelievi venosi vengono fatti nei successivi 10 minuti, con il laccio ancora stretto. Questi prelievi forniscono la produzione locale di lattato da parte dei muscoli scheletrici (Livingstone C et al. 2001). In figura 3 potete vedere l’esame di un paziente: il livello basale di lattato è perfettamente nella media, ma dopo 3 minuti la curva (in rosso) si discosta dal valore medio e sale oltre il valore massimo (anche se di poco). Questo tipo di andamento è coerente con quanto evidenziato in vitro da Fluge e Mella, e con la loro ipotesi sul piruvato deidrogenasi.

img-20151109-wa0001
Figura 3. Curva lattato, dopo sforzo ischemico dell’avambraccio. In rosso il livello di acido lattico del paziente, che da un valore perfettamente normale, sale superando il valore massimo (anche se di poco).

In questo test si misura anche l’ammonio, come verifica del fatto che il paziente si sia ‘impegnato’ nell’esecuzione dello sforzo. Infatti l’ammonio è un prodotto del metabolismo energetico (specialmente anaerobico), secondo le seguenti reazioni:

  1. 2ADP –> ATP + AMP
  2.   AMP –> IMP + NH3

9.Il cavaluccio marino

Le misure di cui ho parlato in questo articolo sono state effettuate con il dispositivo Seahorse XFe96 della Agilent. Questo apparecchio permette di misurare in tempo reale il metabolismo energetico cellulare (ad esempio di linfociti) attraverso una misura del consumo di ossigeno (che fornisce una stima semplice del funzionamento mitocondriale) e la produzione di protoni (che si può ritenere una misura della glicolisi), in varie condizioni sprimentali. Video esplicativo.

A comparison between four studies on energy metabolism in ME/CFS

A comparison between four studies on energy metabolism in ME/CFS

There is a European study that has checked for the expression of 1007 mitochondrial proteins in platelets from 2 twins, one with ME/CFS and the other one healthy (Ciregia F et al 2016). Of these proteins, 194 were significantly modified in the sick twin, in comparison with the healthy one. I have checked for differences in pyruvate dehydrogenase complex, ADP/ATP translocase subunits and pyruvate dehydrogenase kinases. This is what I have found in these two twins:

1) Pyruvate dehydrogenase E1 subunits alpha (PDHA) and beta are both increased in the sick twin, which is in partial agreement with the increase in PDHA found by Fluge and Mella (Fluge et al. 2016);

2) ADP/ATP translocase, sub unit 2 and 3, are low in the sick twin, compared with the healthy one, which could be in accordance with the study by Myhill and colleagues (Myhill S et al. 2009), (Booth, N et al 2012), if only we assume that the problem with this enzyme found in group defined “HiBlk” is not due to blockage from a molecule or an autoantibody, but is instead due to under expression of the enzyme itself;

3) Pyruvate dehydrogenase kinases 1 and 3 are over expressed, which again is in partial agreement with what Fluge and Mella have found in their recent paper, where PDK 1, 2, 4 are over expressed in ME/CFS patients.

In conclusion, the sick twin does not seem to have any blockage of ADP/ATP translocase, because if that was the case he would present an over expression of the enzyme, while the enzyme is under expressed. On the other hand, he does seem to have a problem with his pyruvate dehydrogenase, in fact there is inhibition by over expressed PDK 1 and 3 and – at the same time – he is expressing more PDHA than his heathy twin.

The same European study (Ciregia F et al 2016) then selected three enzymes from the 194 significantly modified in the sick twin: ACON, ATPB e MDHM. They then evaluated the expression of these enzymes in a cohort of 45 Italian patients with ME/CFS and in 45 matched controls. In this case, they considered mitochondria from saliva. They found that both ACON and ATPB are over expressed in patients.

ACON stands for aconitase, which is an enzyme of the TCA cycle, that catalyzes the step from citrate to cis-aconitate (see figure). Thus, its over-expression in this cohort of patients is in agreement with the depletion of these two metabolites, found in a recent japanes study (Yamano E, et al. 2016) and with the study by Fluge and Mella: in fact, if we assume that the TCA cycle is poorly supplied by glycolysis, it would over express one or more enzymes in order to increase the energy production from the substrate available. Thus, this finding seems in agreement with both the Norwegian and the Japanese study, and seems to complete the picture.

metabolism-7
In this picture I have put together the levels of metabolites of the TCA from the japanese study and the picture used by Fluge and Mella in their metabolic study. I have indicated the function of aconitase in TCA cycle.

ATPB is subunit beta of ATP synthase, and it is involved in the last step of mitochondrial metabolism, the conversion of ADP into ATP. Again, an over expression of this enzyme seems to be in agreement with poor energy supply.

A discussion on these observation can be found in this thread in Phoenix Rising.

Mitocondri norvegesi, primo atto: amminoacidi

Mitocondri norvegesi, primo atto: amminoacidi

L’antefatto

A fine ottobre, durante l’ultima IACFS/ME (una conferenza biennale che riunisce i maggiori esponenti della ricerca sulla ME/CFS) i due oncologi Öystein Fluge e Olav Mella dell’ospedale universitario di Bergen (Norvegia), avevano presentato dei risultati preliminari che sembravano evidenziare un difetto nel metabolismo energetico dei pazienti ME/CFS. Ma la parte più interessante del loro intervento consisteva nell’avere proposto una possibile origine di questo difetto, nell’avere cioè potuto localizzare la vera fonte dei problemi. Circa un mese dopo – a Stoccolma – Öystein Fluge aveva di nuovo stuzzicato la curiosità di pazienti e ricercatori, durante una seconda conferenza scientifica, senza però fornire dati precisi. Esiste un video di questo secondo intervento (qui). Fluge e Mella sono famosi nella comunità ME/CFS, e lo sono per un motivo sensato: hanno trovato un potenziale trattamento per più del 50% dei pazienti. Si tratta di un anticorpo monoclonale (Rituximab) che uccide la sottopopolazione di cellule B che esprime l’antigene CD20 sulla superficie. L’effetto della terapia è spesso temporaneo, ma in qualche caso la remissione è permanente (Fluge Ö et al. 2015). Sono due scienziati rispettati, e in Norvegia hanno ottenuto il sostegno del governo nella loro ricerca sulla ME/CFS. In definitiva, da ottobre è iniziata l’attesa per la pubblicazione che avrebbe svelato un possibile nodo centrale del difetto metabolico nella ME/CFS. Tuttavia i bene informati avevano già cominciato a bisbigliare un nome, a masticarlo nelle loro riflessioni; a evocarlo forse anche durante la loro vita onirica: piruvato deidrogenasi.

La pubblicazione, tre studi in uno

Lo studio è stato pubblicato il 22 dicembre sulla rivista JCI insight e si trova qui. Lo studio consiste in tre parti:

  1. una analisi di alcuni metaboliti rilevanti per il metabolismo energetico;
  2. uno studio di espressione genica di alcune proteine rilevanti nel metabolismo energetico;
  3. uno studio in vitro in cui cellule muscolari umane sono coltivate con siero dei pazienti.

In questo articolo illustrerò la prima parte dello studio, contestualizzando i risultati rispetto a due precedenti studi.

catabolismo.jpg

Figura 1. Catabolismo degli amminoacidi. I percorsi metabolici lungo i quali gli amminoacidi alimentano il metabolismo energetico. Da (Fluge O et al. 2016), con modifiche.

Primo atto, amminoacidi e ciclo dell’acido citrico

Sono stati esaminati campioni biologici di 200 pazienti ME/CFS (162 donne e 38 maschi) e 102 controlli sani. La concentrazione dei 20 amminoacidi standard è stata misurata con l’uso di uno spettrometro di massa. Gli amminoacidi sono stati classificati in tre categorie, in funzione del loro punto di ingresso nei percorsi metabolici energetici (figura 1). Infatti in assenza di glucosio in persone sane, così come in particolari patologie metaboliche, gli amminoacidi possono essere ‘bruciati’ per produrre energia, in un processo detto catabolismo degli amminoacidi (Bryant Miles, 2004), (Salway JG 2004). I tre gruppi sono:

  1. Categoria I. Sono gli amminoacidi che vengono convertiti in piruvato: alanina (Ala), cisteina (Cys), glicina (Gly), serina (Ser), e treonina (Thr).
  2. Categoria II. Sono gli amminoacidi che vengono convertiti in acetil-coenzima A (acetil-CoA), e che dunque alimentano direttamente il ciclo dell’acido citrico (TCA): isoleucina (Ile), leucine (Leu), lysine (Lys), fenilalanina (Phe), triptofano (Trp), e tirosina (Tyr).
  3. Categoria III. Sono amminoacidi che vengono convertiti in metaboliti intermedi del ciclo del TCA: metionina (Met) e valina (Val), convertiti in succinil-CoA; istidina (His), glutamine (Gln), acido glutammico (Glu), e prolina (Pro), convertiti in alpha-chetoglutarato; asparagina (Asn) e aspartato (Asp), convertiti in fumarato o oxaloacetato.

Nello schema in figura 1 si indica Glx la somma Gln+Glu e Asx la somma Asn+Asp. Le stesse categorie e i metaboliti verso cui convergono sono riassunti nello schema in figura 2. Questo tipo di schematizzazione è semplificata, infatti gli amminoacidi sono coinvolti in numerosi altri percorsi metabolici. Per esempio il triptofano, in presenza di fenomeni infiammatori, può essere degradato in acido quinolonico e acido chinurenico (Mehraj, V et Routy JP 2015), piuttosto che essere catabolizzato in acetil-CoA. Ma le semplificazioni sono molto utili in un sistema così complesso, come il metabolismo. I risultati di questa analisi sono riportati in figura 2. Come si vede:

  • non ci sono differenze significative tra i pazienti e il controllo, negli amminoacidi della categoria I (quelli convertiti in piruvato), con eccezione della alanina;
  • gli amminoacidi della categoria II sono ridotti nelle donne, ma normali negli uomini, con la eccezione della tirosina, ridotta anche nei maschi;
  • gli amminoacidi della categoria III sono ridotti nelle donne, ma normali nei maschi.

amminoacidi.jpg

Figura 2. Le tre categorie di amminoacidi, classificati in base al metabolita del metabolismo energetico in cui si convertono. Tabella di Paolo Maccallini.

Le donne sono diverse

Come si vede, si ha una significativa riduzione degli amminoacidi della categoria II e III nelle donne con ME/CFS, ma non nei maschi. Poiché gli amminoacidi della categoria II convergono nella sintesi di acetil-CoA e quelli della categoria III sono utilizzati per alimentare il ciclo del TCA a vari livelli, gli autori hanno dedotto che il ciclo del TCA non è adeguatamente alimentato dalla glicolisi e – per compensare – utilizza gli amminoacidi delle categorie II e III. Se si osserva la figura 1, il lettore può ipotizzare da solo che vi sia un qualche difetto nell’enzima piruvato deidrogenasi (PDH), il quale trasforma il piruvato in acetil-CoA. E questa è proprio l’ipotesi proposta da Fluge, Mella e il loro gruppo:

  • nelle donne con ME/CFS un blocco dell’enzima PDH non permette alla glicolisi di rifornire di Acetil-CoA il ciclo del TCA, così vengono bruciati amminoacidi della categoria II e III come forma di compenso.

Atrofia muscolare

In cerca di spiegazioni per la mancanza di alterazioni nel profilo metabolico dei maschi, gli Autori hanno misurato il livello sierico della 3-metilistidina  (3-MHis), una molecola che si eleva quando – in mancanza di cibo – gli esseri umani cominciano a nutrirsi dei propri stessi tessuti, ovvero catabolizzano i propri muscoli, utilizzandoli come fonte di proteine. Nelle donne il livello di 3-MHis è normale, ma nei maschi è significativamente elevato. Questo dato, e considerazioni che vedremo nel seguito, hanno portato gli Autori a ipotizzare che:

  • nei maschi con ME/CFS si ha lo stesso blocco dell’enzima PDH ipotizzato nelle donne, e le proteine contenute nei loro muscoli vengono disassemblate e utilizzate per alimentare il ciclo del TCA.

metabolism 7.jpg

Figura 3. Gli amminoacidi delle categorie I, II e III, con i loro punti di ingresso nel metabolismo energetico. I valori di alcuni metaboliti intermedi del ciclo del TCA sono ridotti nella ME/CFS. L’enzima aconitasi (aconitase, in inglese) è sovra espresso. Da (Fluge O et al. 2016) e (Yamano E, et al. 2016), con modifiche.

Norvegia vs Giappone

Cosa succederebbe allora se si misurassero direttamente i metaboliti del ciclo del TCA, come il citrato, l’alfa-chetoglutarrato etc? Cosa si aspetterebbe il lettore? La logica vorrebbe che questi metaboliti siano tutti ridotti, infatti se l’organismo si vede costretto a consumare amminoacidi al posto del glucosio, significa che il ciclo del TCA è inadeguatamente alimentato. Purtroppo lo studio norvegese non prevede la misura dei metaboliti del ciclo del TCA, ma qualcuno forse ricorderà che quei metaboliti sono stati misurati in un studio giapponese (Yamano E, et al. 2016). Avevo discusso quello studio in un mio precedente articolo. Nella figura 3 ho aggiunto i risultati dello studio giapponese allo schema proposto da Fluge e Mella. Come potete vedere i metaboliti del ciclo del TCA sono ridotti, e la riduzione è particolarmente significativa nel caso del citrato, dell’isocitrato e del malato. In definitiva, lo studio di Fluge e Mella è in accordo con quello di Yamano e complessivamente possiamo affermare che:

  • c’è un blocco del rifornimento di Acetil-CoA nei mitocondri da parte della glicolisi, quindi i mitocondri cercano di alimentarsi con amminoacidi (Fluge Ö et al. 2016), ma nonostante questo tentativo, la produzione energetica dei mitocondri resta deficitaria (Yamano E, et al. 2016).

Norvegia, Giappone e la reumatologia di Pisa

In un mio precedente articolo (vedi qui) ho discusso i risultati di uno studio europeo che ha visto la collaborazione di ricercatori italiani, inglesi e tedeschi, e di 45 pazienti ME/CFS della reumatologia di Pisa (Ciregia F et al 2016). Gli Autori hanno dimostrato – in questi pazienti – la sovraespressione di due enzimi mitocondriali: la subunità beta dell’enzima ATP sintetasi (ATPB) e la aconitasi mitocondriale (ACON). Il secondo enzima in particolare catalizza un passaggio metabolico del ciclo del TCA, la reazione che dal citrato porta al cis-acotinato. Ho riportato la posizione di questo enzima nella figura 3, in azzurro. Quello che ci interessa qui osservare è che lo studio sulla espressione dell’ACON è in perfetta sintonia con quello norvegese, infatti:

  • una riduzione della alimentazione del ciclo del TCA comporterebbe una sovraespressione di vari enzimi che catalizzano le reazioni del ciclo, allo scopo di estrarre ogni goccia di energia possibile dal substrato disponibile.

Anche la sovraespressione di ATPB – che è un enzima chiave della catena respiratoria – è coerente con questo modello e lo conferma ulteriormente.

withney

Figura 4. I metaboliti intermedi del ciclo del TCA di Whitney Dafoe sono tutti ridotti a un mezzo del normale.

 E il paziente zero?

In un mio articolo sul metabolismo energetico di Whitney Dafoe (il ‘paziente zero’) (vedi qui) avevo discusso come i metaboliti intermedi del suo ciclo del TCA fossero tutti ridotti a circa la metà dl valore medio normale (vedi figura 4). Non sarebbe neanche necessario osservare, a questo punto, che questo profilo metabolico è coerente con lo studio giapponese, con quello norvegese e con i dati provenienti dai pazienti della reumatologia di Pisa.

Lo studio Naviaux

In accordo con il presente studio, anche Naviaux e colleghi hanno riportato una riduzione di leucina, isoleucina e valina, tanto nei maschi che nelle femmine con ME/CFS (Naviaux R et al. 2016).

Conclusione

Lo studio norvegese suggerisce che la glicolisi non rifornisca di acetil-coA il ciclo del TCA in modo adeguato, per questo i mitocondri bruciano amminoacidi al posto del glucosio (catabolisi degli amminoacidi). Nelle donne gli amminoacidi sono sottratti al flusso sanguigno, nei maschi sono prelevati dai muscoli. Lo studio norvegese è in accordo con un precedente studio giapponese e con i dati del metabolismo di Whitney Dafoe, che riportano una complessiva riduzione dei metaboliti intermedi del ciclo del TCA. Anche la sovraespressione dell’enzima ACON, dimostrata nei pazienti della reumatologia di Pisa, è coerente con una alimentazione inadeguata del ciclo del TCA.

Dove fare gli esami?

Gli esami metabolici possibili al momento sono di due tipi: il profilo degli amminoacidi (come nello studio norvegese) oppure l’analisi diretta dei metaboliti intermedi del ciclo del TCA (come nello studio giapponese, e come nell’esempio di Whitney Dafoe). Ecco alcune indicazioni.

  1. Il profilo amminoacidico utilizzato da Fluge e Mella (figura 2) è disponibile in molti ospedali italiani (Bambin Gesù di Roma, Ospedale di Udine, Policlinico Umbero I di Roma etc), e può essere eseguito sia sul sangue (come nel caso dello studio norvegese) che su urine. L’esame sul sangue probabilmente fornisce una istantanea del metabolismo energetico medio di ogni cellula del corpo. L’esame delle urine può fornire altri dati, ma al momento non ho idee chiare sul loro significato. Questo esame sembra particolarmente indicato nelle donne, nei maschi potrebbe essere normale.
  2. Per quanto riguarda invece gli esami di metaboliti intermedi del ciclo del TCA, al momento non mi risulta siano disponibili negli ospedali italiani, ma sono offerti da questo laboratorio spagnolo, e probabilmente da altri laboratori europei di cui non sono a conoscenza. Per ulteriori informazioni rimando a questo mio articolo. Questo esame dovrebbe essere significativo tanto per le donne che per gli uomini.

La parola a Fluge e Mella

In questo video della televisione norvegese – con sottotitoli in inglese – gli autori dello studio commentano i loro risultati. Olav Mella – in particolare – sottolinea verso la fine del servizio che loro ritengono che la disfunzione alla base della ME/CFS sia reversibile.

Il prezzo dell’energia

Il prezzo dell’energia

Introduzione

Diversi lavori hanno fin qui dimostrato, nei soggetti ME/CFS, un insolito utilizzo dei sistemi anaerobici di produzione dell’energia. Discuterò questo argomento citando alcuni studi e portando come esempio, per fissare le idee, le misure effettuate sul mio stesso metabolismo energetico. Proporrò infine un possibile modello teorico per la post-exertional malaise.

Neutrofili in apnea

Nel 2009 e nel 2012 Myhill e colleghi pubblicarono i risultati di alcune misurazioni del metabolismo energetico dei neutrofili estratti dal sangue periferico di complessivi 200 pazienti ME/CFS. Tra le varie osservazioni fatte, di particolare interesse è il riscontro di un gruppo di pazienti, denominato dagli autori gruppo B, in cui la frazione di energia prodotta anaerobicamente risultava particolarmente elevata rispetto al controllo sano (Myhill S et al. 2009), (Booth, N et al 2012). Io sono risultato appartenere a questo gruppo, infatti i miei neutrofili contano per il 23% sulla sintesi anaerobica di energia, quando normalmente questa quota non dovebbe superare l’11%. Questa iperproduzione anaerobica sembra un tentativo di compenso per la scarsa produzione aerobica di energia, che appare tuttavia velleitario. Infatti nel mio caso, e nel caso di tutti gli altri pazienti studiati da Myhill e colleghi, la sintesi di ATP era deficitaria. E’ importante notare che l’iperattività del sistema energetico anaerobico, rilevato nei neutrofili da Myhill, è stata recentemente confermata nelle cellule mononucleari (linfociti e monociti) del sangue periferico di pazienti ME/CFS, da un gruppo di ricercatori della Stanford University e della Columbia University (Lawson N et al. 2016). Il dato dunque si estende ad altre cellule, ed acquista un valore più universale.

Hai voluto la bicicletta?

Diversi studi hanno valutato le prestazioni fisiche dei pazienti ME/CFS durante il test ergospirometrico. In questo test il paziente viene posto su una cyclette e invitato a pedalare contro una resistenza crescente. Una mascherina collegata con dei tubi a dei sensori, misura lo scambio di ossigeno e anidride carbonica del soggetto con l’esterno, mentre degli elettrodi rilevano la sua attività cardiaca. Senza entrare nei dettagli, questi esperimenti hanno dimostrato che per erogare la stessa potenza, i pazienti ME/CFS utilizzano meno ossigeno dei controlli sani, ovvero fanno maggiore affidamento sui sistemi anaerobici di produzione della energia. Questo fenomeno si acutizza se il test viene ripetuto in due giorni consecutivi (Vanness, 2007), (Snell, 2013). Nel mio caso il volume di ossigeno consumato per Watt erogato al test ergospirometrico è minore di 9 ml/W, e questo depone appunto per un sistema aerobico inefficiente e per un sistema anaerobico iperattivo. E’ bene notare che, mentre le misure sui neutrofili dimostrano un problema del sistema aerobico solo in un tipo di cellula (il neutrofilo appunto), il test ergospirometrico conferma questo difetto a livello sistemico.

Dove si trova il guasto?

Uno scenario possibile nella ME/CFS è che il sistema aerobico di produzione di energia delle cellule sia difettoso, e che i sistemi anaerobici (sono almeno tre, vedi seguito) siano iperattivi, come tentativo di compenso. Ma dove si trova il difetto del sistema aerobico? Varie ipotesi sono possibili. Qui vorrei discuterne una che è stata proposta durante la conferenza IACFS/ME 2016, tenutasi in Florida in Ottobre. Il gruppo norvegese avrebbe proposto in quella sede un modello teorico in cui un qualche difetto al livello dell’enzima piruvato deidrogenasi (che trasforma il piruvato in acetil-CoA) impedisce il collegamento tra la glicolisi e il ciclo di Krebs. Questa ipotesi è particolarmente affascinante perché si sposa egregiamente sia con il lavoro di W. Armstrong sul catabolismo degli ammino acidi (Armstrong W et al. 2015) che con quello di Yamano sulla depressione della parte iniziale del ciclo di Krebs (Yamano E et al. 2016). Nel mio caso, senza entrare nei dettagli, ho verificato un consumo di diversi amminoacidi non essenziali, coerente con quello descritto da Armstrong. Questo significa che nelle mie cellule probabilmente si sta cercando di ossidare gli aminoacidi al posto dell’acetil-CoA, che forse non viene approvigionato per un problema al livello del piruvato deidrogenasi, in accordo con la teoria norvegese.

Il prezzo dell’energia anaerobica

Abbiamo visto sin qui che le mie cellule cercano di compensare un difetto del sistema aerobico di energia, potenziando il sistema anaerobico, oltre che tentando di ossidare gli amminoacidi. Ma quali sono i sistemi anaerobici di produzione di energia? Sono almeno tre, e li riassumo nel seguto.

  1. La glicolisi è il più conosciuto, e produce 2 molecole di ATP per ogni molecola di glucosio. Il prezzo da pagare per questo tipo di produzione di energia è la sintesi di lattato, una molecola tossica che il metabolismo deve prendersi l’onere di smaltire.
  2. L’idrolisi della fosfocreatina, con la quale viene liberato un fosfato inorganico per ogni molecola di fosfocreatina (Livingstone C et al. 2001).  La conseguenza di un uso eccessivo di questo percorso metabolico sarebbe la riduzione della creatina plasmatica, secondo Armstrong (Armstrong W et al. 2015), anche se non mi è chiaro il perché.
  3. La fusione di due molecole di ADP, con la formazione di una molecola di ATP e una di AMP, attraverso l’enzima adenilate chinasi. L’AMP è ulteriormente degradato in IMP e ammonio (NH3) (Livingstone C et al. 2001) e l’IMP viene ancora smembrato, producendo adenosina (Salway JG 2004).

Questi tre sistemi sono poco efficienti (sono sistemi primitivi, soppiantati dalla invenzione evolutiva dei mitocondri) e un loro utilizzo eccessivo, come visto, impone un prezzo metabolico da pagare. Usando il mio metabolismo come esempio, emergerebbe un uso eccessivo dei sistemi 2 e 3. Infatti non è mai risultato nel mio caso, se non in un paio di misurazioni, un accumulo eccessivo di lattato. Risulta invece una deplezione della creatina plasmatica (sistema 2) e un leggero accumolo di ammonia (sistema 3).

Adenosina e crash

Abbiamo visto che il mio ciclo di Krebs sembra non ricevere adeguato approvigionamento di acetil-CoA, e per compensare ossida amminoacidi. Abbiamo anche visto un altro tentativo di compenso, attraverso il sovrautilizzo di due sistemi anaerobici di produzione di energia, la idrolisi della fosfocreatina e la fusione di due ADP per formare una molecola di ATP. Questo secondo meccanismo in particolare, comporta la sintesi di ammonio, che è neurotossico, e di adenosina. L’adenosina è una molecola che presenta diversi recettori in vari tessuti. Se in particolare stimola il recettore A2a, la conseguenza è vasodilatazione (calo pressorio) (McVey MJ et al. 1999) e depressione del sistema dopaminergico nel sistema nervoso centrale (Schiffmann SN et al. 2007).

Ipotesi

Nel mio caso, il minimo sforzo fisico, a volte anche solo il fatto di restare seduto per alcune ore, causa un episodio di acutizzazione dei sintomi, che può durare da un giorno ad alcune settimane. Questi episodi sono caratterizzati da ipotensione ortostatica e letargia, con profonda confusione. Se ammettiamo che il mio metabolismo faccia affidamento in modo particolarmente elevato al terzo meccanismo di sintesi anaerobica della energia descritto più sopra, allora potrebbe aversi una produzione anomala di adenosina. Questa sostanza potrebbe causare vasodilatazione e depressione della trasmissione dopaminergica, e quindi costituire la base fisiologica di miei crash. Bisogna tuttavia menzionare il fatto che nello studio metabolomico di Robert Naviaux l’adenosina è stata misurata, e mentre nei maschi non è risultata alterata, nelle femmine è addirittura più bassa del normale (non più alta) (Naviaux R et al. 2016). Quindi al momento non esistono dati sperimentali a sostegno di questa ipotesi. Resta tuttavia plausibile, per me e per altri pazienti, lo scenario in cui un ciclo di Krebs ipoattivo (forse perché le sue vie di rifornimento sono bloccate) porta a un aumento della sintesi anaerobica di energia con uno o più dei sistemi anaerobici indicati. Ciascuno di essi è poco efficiente e richiede un prezzo metabolico da pagare.

Approfondimenti

  • Studio di Myhill e colleghi sui mitocontri dei neutrofili (qui).
  • Studio di Yamano e colleghi sul ciclo di Krebs (qui).
  • Studio metabolico di un paziente (qui).

Mitocondri giapponesi e le due ME/CFS

Mitocondri giapponesi e le due ME/CFS

Pazienti, campioni e strumentazione

In un recentissimo studio giapponese (Yamano E, et al. 2016) 67 adulti con diagnosi di ME/CFS (criteri Fukuda) e 66 controlli sani sono stati sottoposti a un dettagliato esame metabolico. Il loro sangue periferico è stato analizzato attraverso un particolare tipo di spettroscopia di massa (capillar electrophoresis timo-of-flight mass spectrometry, CE-TOFMS) in grado di individuare 144 metaboliti distinti nel medesimo campione. Tra queste molecole ne sono state individuate in particolare 31, relative alla glicolisi, al ciclo di Krebs (o ciclo dell’acido tricarbossilico, TCA), e al ciclo dell’urea (vedi figura 1).

mitocondri giapponesi.png
Figura 1. Livelli di alcuni metaboliti della glicolisi, del ciclo di Krebs e del ciclo dell’urea nei pazienti ME/CFS e nel controllo sano (Yamano E. et al. 2016).

Glicolisi

Ricordo che la glicolisi avviene nel citoplasma (fuori dai mitocondri) e permette di ricavare due molecole di ATP da ogni molecola di glucosio. Lo scarto della glicolisi consiste in due molecole di piruvato, per ciascuna molecola di glucosio processata. I ricercatori giapponesi hanno rilevato come unica anomalia di questa parte iniziale del metabolismo energetico, un aumento del suo prodotto finale, ovvero del piruvato (vedi figura 1). Ciò nonostante, il glucosio e il lattato vengono mantenuti in parametri normali, probabilmente grazie a una serie di sistemi di compensansione.

Ciclo di Krebs

Ricordo che il piruvato è il carburante che alimenta la seconda fase del metabolismo energetico, che si verifica all’interno dei mitocondri. In questa seconda fase, il piruvato è convertito in Acetil-CoA (con la sintesi di 3 molecole di ATP per ciascun piruvato), e l’Acetil-CoA è poi inviato al ciclo di Krebs (o ciclo dell’acido citrico), dove sono prodotte altre 12 molecole di ATP per ogni molecola di Acetil-CoA. Più precisamente, il ciclo di Krebs produce una molecola di ATP, tre di NADH e una di FADH2; queste due ultime molecole vengono inviate alla fosforilazione ossidativa (membrana dei mitocondri) dove sono utilizzate per sintetizzare complessivamente 11 molecole di ATP. I ricercatori giapponesi hanno rilevato una complessiva riduzione dei metaboliti del ciclo di Krebs, ma in particolare la depressione riguarda la parte iniziale, ovvero il citrato e l’isocitrato.

Il ciclo dell’urea

Ricordo che il ciclo dell’urea si occupa di smaltire i rifiuti del metabolismo degli amminoacidi, producendo urea a partire da ammoniaca (NH3). Nello studio giapponese è stato riscontrato un aumento di ornitina, e una sensibile riduzione di citrullina.

Un test metabolico per la CFS

In base a quanto sopra, gli Autori dello studio hanno concluso che i cinque metaboliti ornitina, citrullina, piruvato, lattato, e isocitrato sono quelli che con maggiore evidenza possono rappresentare il difetto metabolico dei pazienti ME/CFS. In particolare i ricercatori hanno riscontrato come la combinazione di valori alti per i due rapporti ornitina/citrullina e piruvato/isocitrato  fornisca un test per discriminare i pazienti ME/CFS dal controlo sano (vedi figura 2).

test-giapponese
Figura 2. Il rapporto piruvato/isocitrato (glicolisi e ciclo di Krebs) e il rapporto ornitina/citrullina (ciclo dell’urea) discriminano tra ME/CFS e controllo sano (Yamano E. et al 2016).

Dove sta il problema?

Secondo Yamano e colleghi, l’analisi di questi dati suggerisce un qualche difetto nei passaggi che vanno dal piruvato all’isocitrato. Ovvero il blocco metabolico si estende tra l’ingresso del piruvato nei mitocondri e la parte iniziale del ciclo di Krebs. I ricercatori affermano espressamente che:

la ridotta concentrazione dei metaboliti della fase iniziale del ciclo di Krebs verosimilmente rappresenta il processo patologico alla base della fatica.

Giappone vs Italia

Uno studio europeo che ha indagato l’espressione di due enzimi mitocondriali nella saliva di pazienti ME/CFS reclutati dall’Ospedale santa Chiara di Pisa, ha riportato recentemente una alta espressione di due enzimi chiave del metabolismo mitocondriale, ovvero la subunità beta della ATP sintetasi (ATPB, complesso V in figura 3) e l’aconitasi mitocondriale (ACON) (Ciregia F et al 2016). Una mia sintesi di questo studio è disponibile qui. Quello che ci interessa in questa sede è rilevare una certa coerenza fra lo studio europeo e quello giapponese, infatti se ammettiamo che il ciclo di Krebs è bloccato nella sua fase iniziale, possiamo immaginare che il sistema cercherà di compensare aumentando l’espressione di alcuni o tutti gli enzimi a valle del blocco, al fine di estrarre ogni possibile risorsa dal substrato disponibile. Ora si dà il caso che ACON è proprio l’enzima che catalizza la reazione da citrato a isocitrato. Mentre ATPB fa parte del complesso enzimatico con cui culmina la catena respiratoria, con sintesi di ATP da ADP. Si ravvisa dunque un possibile accordo fra i due studi, e questo è un ottimo segno.

Giappone vs Australia

Nel 2015 uno studio australiano sul metabolismo della ME/CFS (Armstrong CW et al. 2015) ha rilevato dati per molti aspetti opposti rispetto a quelli riportati da Yamano e colleghi. Infatti gli australiani hanno dedotto l’esistenza di un blocco della glicolisi (a monte del piruvato) dalla ridotta abbondanza di piruvato e lattato (esattamente il contrario di quanto riportato dai giapponesi) e hanno riscontrato l’uso di amminoacidi come fonte alternativa di carburante nel ciclo di Krebs. Da notare anche che per gli australiani il rapporto ornitina/citrullina è ridotto nella ME/CFS rispetto ai controlli sani, non aumentato! Tuttavia è interessante rilevare che un blocco della glicolisi produrrebbe comunque un blocco del ciclo di Krebs, quindi in entrambe le condizioni descritte il quandro clinico sarebbe probabilmente lo stesso. E sia lo studio australiano che quello giapponese sono coerenti con quello sui pazienti toscani.

Giappone vs Inghilterra

Tra il 2009 e il 2013 un gruppo inglese costituito dal fisico Norman Booth, dal medico Sarah Myhill, e da McLaren-Howard ha prodotto una serie di studi sui mitocondri dei neutrofili estratti dal sangue periferico di pazienti ME/CFS (Myhill S et al. 2009), (Booth, N et al 2012), (Myhill S et al. 2013) in cui dimostrarono una complessiva perdita di efficienza di questi organelli, in parte riconducibile a un difetto dell’enzima ADP/ATP translocator (ANT in figura 3), specialmente nella sua funzione di esportazione di ATP da dentro i mitocondri al citoplasma. Sorprendentemente questo enzima è sottoespresso, secondo lo studio sui pazienti italiani. Tuttavia questo dato non permette di dedurre nulla di particolare sul ciclo di Krebs, e quindi non è possibile fare un confronto fra gli studi inglesi e quello giapponese e australiano.

ANT.png
Figura 3. La catena respiratoria (Cohen BH, Gold, DR, 2001).

Giappone vs California

In un precedente post ho provato a discutere i dati metabolici di Whitney Dafoe, il figlio del celebre genetista Ronald Davis (Stanford University), il quale è stato sottoposto per primo a un nuovo test metabolmico, uno dei più completi esistenti (circa 400 metaboliti). Quello che risulta dal suo test è una complessiva inibizione sia della glicolisi che del ciclo di Krebs. In questo caso dunque si ha un paziente che rientrerebbe nel profilo descritto dagli australiani, e non in quello descritto dai giapponesi, anche se non è possibile fare un confronto diretto con lo studio australiano, che non prevede l’analisi diretta dei metaboliti del TCA.

Tutte le strade portano alla ME/CFS

Si deve ammettere che lo studio giapponese non è coerente con quello australiano, tuttavia emerge una possibilità: che i due studi abbiano descritto due diversi difetti metabolici (blocco della parte iniziale del TCA nel primo, e della glicolisi nel secondo) che portano entrambi allo stesso quadro clinico, ovvero alla ME/CFS. Infatti tanto in un caso, che nell’altro, si avrebbe una depressione dl ciclo di Krebs. In entrambi i casi si avrebbe poi un quadro compatibile con la sovra espressione degli enzimi ATPB e ACON (studio europeo). Quest’ultimo studio riporta poi una sotto espressione dell’enzima ANT, che sembra disfunzionale negli studi inglesi. Il caso di Whitney è in fine compatibile con lo studio australiano. L’esito finale è in ogni caso una deplezione di ATP che può ben essere la causa di deficit cognitivi, della post-exertional malaise, della fatica a riposo, e della POTS. Ovvero di ciò che chiamiamo comunemente ME/CFS.

Conclusione e prospettive

In conclusione, sembrano essere almeno due le strade metaboliche che portano alla ME/CFS. Una mia ricerca, attualemnte in corso e basata per il momento sui dati di soli due pazienti, potrebbe spiegare entrambe questi difetti metabolici, attraverso un fenomeno autoimmune. Basta infatti considerare che…

Il bicchiere mezzo pieno

Il bicchiere mezzo pieno

Il paziente zero

All’inizio di questo anno si è tenuta a San Francisco l’edizione 2016 della Personalized Medicine World Conference (PMWC) (programma). Durante la prima giornata dei lavori, il dr. Andreas Kogelnik, medico e bioingegnere presso l’Open medicine Institute, ha presentato alcuni dei dati relativi al metabolismo energetico di un giovane uomo affetto da ME/CFS, come esempio di applicazione delle nuove indagini metabolomiche in patologie difficili e ancora sconosciute. Il paziente in questione è il figlio di Ronald Davis, genetista presso la Stanford University attualmente impegnato nella ricerca sulla ME/CFS e sulla Lyme cronica, presso l’Open Medicine Foundation. E’ lo stesso Kogelnik a rivelare nel suo intervento l’identità dell’uomo di cui discute i dati metabolici, e d’altra parte le sfortunate vicende di questo ragazzo sono state rese pubbliche dalla sua stessa famiglia, anche allo scopo di incentivare la ricerca scientifica e l’investimento per la ME/CFS. Chi fosse interessato, trova un toccante racconto del progressivo declino intellettivo e fisico di Whitney (questo è il suo nome), in questo video e in quest’altro.

Un fotografo e la foto del suo metabolismo

Whitney, che ora ha approssimativamente 35 anni, da alcuni anni non è più in grado di spostarsi dal suo letto, di leggere, e di comunicare con i suoi genitori. In passato è stato un apprezzato fotografo e ha girato il mondo. Questo è il suo sito personale. L’ultimo aggiornamento (2013) dice: “Molto malato. Non posso parlare. Non posso scrivere abbastanza per comunicare. Non intrattengo una conversazione con qualcuno da sei mesi…” Whitney è un caso singolare, sia perché ha una manifestazione particolarmente grave di ME/CFS (ma ci sono altri pazienti come lui), sia perché suo padre è un professore di genetica presso una delle migliori università del mondo (Stanford University). E cosa può fare un papà-scienziato per salvare un figlio affetto da una condizione incurabile? Studia, certo! Ma non si limita a perlustrare compulsivamente le pubblicazioni scientifiche o i libri di biologia; mette in piedi un’intera squadra di ricercatori, cerca fondi per finanziarli, e inventa nuove tecnologie, per combattere la malattia. Nel video dell’intervento di Andreas Kogelnik possiamo vedere i primi risulatati del suo sforzo. In particolare al minuto 8 abbiamo una eloquente istantanea del metabolismo energetico di Whitney (vedi figura).

withney
Il livello di alcuni metaboiti della glicolisi e del ciclo di Krebs di Whitney, tratti dal video dell’intervento di Andreas Kogelnik, durante l’edizione 2016 della PMWC.

Joule e glucosio

Prima di esaminare i dati metabolici di Whitney, ricordo brevemente che il processo attraverso il quale le nostre cellule estraggono energia dai legami chimici del glucosio, consiste in due fasi. La prima, la glicolisi, avviene nel citoplasma (fuori dai mitocondri) e permette di ricavare due molecole di ATP da ogni molecola di glucosio. Lo scarto della glicolisi consiste in due molecole di piruvato, per ciascuna molecola di glucosio processata. Ma questo sottoprodotto è il carburante che alimenta la seconda fase, che si verifica all’interno dei mitocondri. In questa seconda fase, il piruvato è convertito in Acetil-CoA (con la sintesi di 3 molecole di ATP per ciascun piruvato), e l’Acetil-CoA è poi inviato al ciclo di Krebs (o ciclo dell’acido citrico), dove sono prodotte altre 12 molecole di ATP per ogni molecola di Acetil-CoA. Più precisamente, il ciclo di Krebs produce una molecola di ATP, tre di NADH e una di FADH2; queste due ultime molecole vengono inviate alla fosforilazione ossidativa (membrana dei mitocondri) dove vengono utilizzate per sintetizzare complessivamente 11 molecole di ATP. La conclusione è che una molecola di glucosio permette di produrre 2 molecole di ATP nel citoplasma, più 36 molecole all’interno dei mitocondri. Questi sono i rudimenti del bilancio energetico delle cellule. La questione si complica quando si considera che anche gli acidi grassi e alcuni amminoacidi sono utilizzati dai mitocondri per produrre energia.

Metà non basta

Cosa ci dice l’istantanea del metabolismo energetico di Whitney? Nel momento in cui si tiene conto del fatto che i dati sono stati normalizzati rispetto presumibilmente alla media aritmetica del controllo sano, emerge che il suo generatore funziona a circa metà della potenza media. Infatti, il piruvato (prodotto finale della glicolisi) è circa 0.6 del valore medio, e tutti i metaboliti del ciclo di Krebs sono compresi tra 0.4 e 0.7. Coerentemente, il livello di glucosio nel sangue è leggermente aumentato (il pancreas di Whitney riesce a evitare l’iperglicemia, evidentemente), mentre quello del lattato è altrettanto basso (il lattato è prodotto dal piruvato).  Ora, se il generatore cellulare di energia eroga una potenza (energia liberata per unità di tempo) pari al 50% di quello che normalmente l’organismo produce, ci si può aspettare che a soffrirne maggiormente siano gli organi con il più alto fabbisogno energetico, come il cervello e i muscoli. E questo modello teorico, basato sui dati reali della termodinamica di Whitney, spiegherebbe i suoi sintomi. Certamente altre interpretazioni sono possibili!

Fuori dal circolo di Krebs

Ma dove si trova il blocco del generatore cellulare del paziente zero? Se la glicolisi funziona al 50% e se è la glicolisi ad alimentare i mitocondri, la risposta sembra semplice: il blocco è nel citoplasma, cioè nella glicolisi stessa, fuori dai mitocondri. Questa interpretazione dei dati è coerente con quanto dimostrato da Christopher Armstrong e dai suoi colleghi della Università di Melbourne, nel 2015. Il gruppo di ricerca è stato infatti in grado di evidenziare un blocco della glicolisi, analizzando il normale pannello degli acidi organici nel sangue e nelle urine di 34 pazienti affetti da ME/CFS (Armstrong CW et al. 2015). L’ipotesi di un blocco della glicolisi è compatibile altresì con il recente lavoro europeo sui pazienti della reumatologia di Pisa, in cui è stata dimostrata una sovra espressione di due fondamentali enzimi mitocondriali (vedi questo post). Infatti, se i mitocondri vengono sottoposti a una riduzione dell’approvigionamento di carburante, è logico pensare che aumenteranno il numero di enzimi per estrarre ogni possibile joule dal substrato disponibile. La mia tuttavia è una semplificazione, infatti il ciclo di Krebs viene alimentato anche da carburante alternativo al piruvato, come alcuni amminoacidi e gli acidi grassi. Quindi il  ragionamento è riduttivo e non conclusivo.

whitney_dafoe_before_and_after_illness
Whitney, da questa pagina.

Ipometabolismo come adattamento

Un’altra possibile spiegazione per la complessiva depressione del sistema energetico (fuori e dentro i mitocondri) è quella fornita da Robert Naviaux, nella sua recente pubblicazione sul metabolismo della ME/CFS. Secondo la sua visione, i mitocondri vengono parzialmente spenti, come risposta a una minaccia ambientale persistente (principalmente infezioni o sostanze tossiche); questa risposta è un meccanismo evolutivamente conservato, il cui ruolo è quello di proteggere l’organismo dalla minaccia, un po’ come la febbre è un sistema di difesa che favorisce la risposta immunitaria contro un virus o un battere. Se questo fosse vero, il blocco dei mitocondri dovrebbe essere gestito in concerto con un blocco della glicolisi, altrimenti si avrebbe l’accumolo di sostanze tossiche, come il lattato. Anche questa ipotesi si adatta bene ai dati sperimentali relativi a Whitney.

Conclusione

Il metabolismo del paziente zero, ovvero del primo paziente ME/CFS soggetto a una approfondita analisi metabolica secondo le nuove tecnologie disponibili, rivela un complessivo dimezzamento della potenza erogata dai generatori di energia delle sue cellule. Apparentemente il difetto è nella parte iniziale del metabolismo del glucosio, fuori dai mitocondri, e si riverbera ovviamente sul metabolismo mitocondriale, che risulta depresso. Tuttavia altre interpretazioni di questi dati sono possibili, come quella dell’ipometabolismo proposta da Naviaux e colleghi. Inoltre, sebbene una riduzione della energia del 50% sembrerebbe spiegare i sintomi, non è possibile affermare che questa riduzione sia la causa della patologia, piuttosto che una sua semplice conseguenza.