Mark Davis and the search for the universal immune test

Mark Davis and the search for the universal immune test

1. Introduction

These are some notes about the talk that Mark Davis gave during the Community Symposium held in August at Stanford (video). I will introduce some basic notions about T cell receptors (TCR) in paragraphs 2, 3, 4, and 5. Paragraphs 6 is a description of an innovative technology developed by Mark Davis and his colleagues, based on information gathered from the video itself and three research papers published by Davis and others in the last 4 years. This background should be hopefully enough to allow a good understanding of the exciting pilot data presented by Mark Davis on T cell activity in ME/CFS (paragraph 7), and in chronic Lyme (paragraph 8), and to realize why this technology promises to be some sort of universal test for any kind of infectious and autoimmune diseases, known or unknown.

2. T cells

T cells are a type of leukocytes (also known as white blood cells), the cellular component of our immune system. Most of our circulating T cells are represented by T helper cells (Th cells) and cytotoxic T lymphocytes (CTL). While the function of Th cells is to regulate the activity of other leukocytes through the production of a wide range of chemicals (cytokines), CTLs are directly involved in the killing of host cells infected by pathogens. T cells belong to the adaptive arm of the immune system, along with B cells (the factories of antibodies), and as such, they are meant to provide a defence tailored to specific pathogens: our immune system can provide not only antibodies specific for a given pathogen but also specific T cells (both Th cells and CTLs). The innate arm of the immune system (which includes natural killer cells, macrophages, dendritic cells, mast cells…) on the other hand can provide only a one-fits-all type of defense, which represents the first line of immune response, during an infection.

3. T cell receptor

T cells search for their specific pathogens thanks to a molecule expressed on their surface, called T cell receptor (TCR). In figure 1 you can see a schematic representation of the TCR and of the mechanism by which T cells recognize their targets. Antigens (proteins) from pathogens are presented to T cells by other cells of our body: they are displayed on molecules called major histocompatibility complex (MHC), expressed on the outer membrane; if the antigen fits the TCR of a specific T cell, then this T cell is activated and proliferates (clonal expansion). The two chains (α and β) are assembled using the transcription of gene segments with several copies each: in other words, TCRs are assembled with peptides chosen randomly within a set of several possible choices. This leads to a repertoire of 10^15 possible different TCRs (Mason DA 1998). Each T cell displays only one type of TCR.

Figure 1. Upper half. Th cells and CTLs share the same TCR: in both cases this molecule is the assembly of two peptides (chain α and chain β), but while the TCR of Th cells (on the right) is expressed next to the molecule CD4 (which binds to class II MHC), the TCR of CTL is associated with the molecule CD8 (on the left), which is specific for MHC I. Black bars represent four chains (a complex called CD3) that are involved in the signaling of the TCR with the nucleus of the cell (by Paolo Maccallini). Lower half. A beautiful structural representation of the TCR, bound to the peptide-MHC complex (pMHC), from (Gonzàlez PA et al. 2013). In green the peptide, in blue the β chain, in dark green the α chain. CDRs (complementarity determining regions, orange) are composed of those residues of the α and β chains that directly bind the pMHC.

4. T helper cells

Th cells can recognize only antigens presented by class II MHC: this class of MHC is expressed on the outer membrane of some leukocytes, mainly dendritic cells, B cells, and macrophages (referred to as antigen presenting cells, APCs). MHC II engages the TCR of Th cells thanks to peptide CD4 (expressed exclusively by Th cells). The antigen presented by MHC II is a peptide with a length of 13-17 amino acids (Rudensky, et al., 1991) (figure 2).

Figure 2. The TCR expressed by a Th cell binds an epitope presented by a class II MHC expressed on the plasma membrane of an APC. Chains α and β of MHC II are also represented (by Paolo Maccallini).

5. Cytotoxic T lymphocytes

TCRs expressed by CTLs can bind only antigens displayed by class I MHC, which can be found on the outer membrane of any cell of our body. CD8 is the molecule that makes the TCR expressed by CTLs specific for MHC I. While antigens presented by APCs belongs to pathogens that have been collected on the battlefield of the infection, peptides displayed by class I MHC of a specific cell belong to pathogens that have entered the cell itself, therefore they are the proof of an ongoing intracellular infection (figure 3). When a CTL recognizes an antigen that fits its TCR, then the CTL induces apoptosis (programmed death) of the cell that displays it. Antigens presented by MHC I are peptides in the range of 8 to 10 amino acids (Stern, et al., 1994).

Figure 3. An infected cell displays a viral antigen on its MHC I. The TCR of a CTL binds this peptide and send a signal to the nucleus of the CTL itself, that responds with the induction of apoptosis (releasing granzymes, for instance) of the infected cell (by Paolo Maccallini).  

6. The universal immune testing

In his talk, Mark Davis presents an overview of some basic concepts about the immune system, before introducing his exciting new data about ME/CFS and post-treatment Lyme disease syndrome (PTLDS, also known as chronic Lyme). But he also describes a few details of a complex new assay that is theoretically able to read all the information packed in the repertoire of TCRs present – in a given moment – in the blood of a human being. As such, this test – that I have named the universal immune testing – seems to have the potential to determine if a given patient has an ongoing infection (and the exact pathogen) or an autoimmune disease (and the exact autoantigen, i.e. the tissue attached by the immune system). To my understanding, this assay requires three steps, described in the following sections.

6.1. First step: TCR sequencing

As said in paragraph 3, when T cells encounter their specific peptide presented by MHC, they proliferate so that in blood of patients with an ongoing infection (or with a reaction against self, i.e. autoimmunity) we can find several copies of T cells expressing the same TCR: while in healthy controls about 10% of total CD8 T cells is represented by clones of a few different T cells (figure 4, first line), in early Lyme disease – an example of active infection – and in multiple sclerosis (MS) – an example of autoimmune disease – we have a massive clonation of a few lines of CTLs (figure 5, second and third line, respectively). The first step of the universal immune testing is represented by the identification of the exact sequence of TCRs expressed by T cells in blood, as reported in (Han A et al. 2014) where it is described how to sequence genes for the α and the β chain of a given T cell. This approach allows to build graphs of the kind in figure 4, and therefore to determine whether the patient has an abnormal ongoing T cell activity or not. If a clonal expansion is found, then we can speculate that either an active infection is present or some sort of autoimmune condition.

Clonal expansion CD8.png
Figure 4. Each circle represents a patient. In the first line, we have four healthy controls, with no clonal expansion of CD8 T cells (the first one, left) or with only a low-level clonal expansion (slices in blue, white, and grey). In the second line, we have four patients with active Lyme disease (early Lyme) and all of them present a massive expansion of only three different T cells (slices in red, blue and orange). In the third line, we have four MS patient with most of their CD8 T cells represented by clones of a bunch of T cells. From the talk by Mark Davis.

6.2. Second step: TCR clustering

Mark Davis and his group have been able to code a software that allows to identify TCRs that share the same antigen, either within an individual or across different donors. This algorithm has been termed GLIPH (grouping of lymphocyte interaction by paratope hotspots) and has been found capable – for instance – to cluster T CD4 cell receptors from 22 subjects with latent M. tuberculosis infection into 16 distinct groups, each of which comprises TCRs from at least 3 different donors (Glanville J et al. 2017). Five of these groups are reported in figure 5. The idea here is that TCRs that belong to the same cluster, react to the same peptide-MHC complex (pMHC).

Figure 5. Five group of TCRs from 22 different donors with latent tuberculosis, clustered by GLIPH. The first column on the left has TCRs IDs, the second one reports donors IDs. Complementarity determining regions (CDR) for the β and the α chains are reported in the third and fifth column, respectively. From (Glanville J et al. 2017).

6.3. Third step: quest for the epitope(s)

As we have seen, this new technology allows to recognize if T cell clonal expansion is an issue in a given patient, by sequencing TCRs from his peripheral blood. It also allows to cluster TCRs either within an individual or across different patients. The next step is to identify what kind of antigen(s) each cluster of TCRs reacts to. In fact, if we could recognize these antigens in a group of patients with similar symptoms, with T cell clonal expansion and similar TCRs, we would be able to understand whether their immune system is fighting a pathogen (and to identify the pathogen) or if it is attacking host tissues and, if that was the case, to identify what tissue. As mentioned, the number of possible TCR gene rearrangement is supposed to be about 10^15, but the number of possible Th cell epitope is about 20^15 which is more than 10^19. This implies that TCRs have to be cross-reactive to some extent, in order to recognize all possible peptides presented by MHCs (Mason DA 1998). The exact extent of this cross-reactivity and the mechanism by which it is obtained has been elucidated by Mark Davis and his colleagues in a recent paper (Birnbaum ME et al. 2014) that gives us the third step of the universal immune testing. The aim of this phase is to take a given TCR and to find the repertoire of his specific antigens (as said, one TCR reacts to several antigens). In order to understand how this is possible let’s consider one of the experiments described in the paper mentioned above. The researchers considered two well-defined TCRs (named Ob.1A12 and Ob.2F3), cloned from a patient with MS and known to recognize peptide 85-99 (figure 6) of myelin basic protein (MBP) presented by HLA-DR15. They then prepared a set of yeast cells expressing HLA-DR15 molecules, each presenting a different peptide of 14 amino acids, with fixed residues only at position 1 and 4, where the peptide is anchored to MHC (figure 6, left). When copies of Ob.1A12 are added to this culture of yeast cells expressing pMHC complexes, they bind only some of them, and as you can see in the right half of figure 6, for each position of the epitopes bound by Ob.1A12, there is an amino acid that is more likely: for instance, the typical epitope of Ob.1A12 preferentially has alanine (A) at position -4, histidine (H) at position -3, arginine (R) at position -2, and so forth. As you can see, histidine (H) at position 2 and phenylalanine (F) at position 3 are obligate amino acids for a Ob.1A12 epitope.

Figure 6. On the left: peptide 85-99 of myelin basic protein (first row) is known to be an epitope for Ob.1A12. At position 1 and 4 it has two residues that allow its binding to the MHC molecule. At position -2, -1, 2, 3, and 5 we find those residues that bind the TCR. The second row represents the generic epitope of the peptide library used to identify the degree of crossreactivity between all the possible Ob.1A12 specific epitopes. On the right: the likelihood of amino acids for each position of Ob.1A12 specific epitopes is represented by shades of violet. As you can see, histidine (H) at position 2 and phenylalanine (F) at position 3 are obligate amino acids for a Ob.1A12 epitope. From (Birnbaum ME et al. 2014).

The table on the right side of figure 6 is, in fact, a substitution matrix with dimension 14×20, a tool that can be used to scan the peptide database in order to find, among all the known peptides expressed by living creatures, all the possible Ob.1A12 specific epitopes. Substitution matrices are commonly used for the so-called peptide alignment, a technique that aims at the identification of similarities between peptides. These matrices are based on evolutionary considerations (Dayhoff, et al., 1978) or on the study of conserved regions in proteins (Henikoff, et al., 1992). But the search for specific epitopes of a given TCR requires (as we have seen here for Ob.1A12) a substitution matrix built ad hoc for that TCR: each TCR requires its own substitution matrix that is obtained adding clones of that TCR on a culture of yeast cells presenting a huge peptide library on their MHCs, and analyzing data from this experiment. So, quite a complex process! In the case of Ob.1A12, this process led to 2330 peptides (including MBP), while the Ob.2F3 specific substitution matrix found 4824 epitopes within the whole peptide database. These peptides included both non-human proteins (bacterial, viral…) and human peptides. For 33 of them (26 non human and 7 human proteins), this group of researchers performed a test in order to directly verify the prediction: 25/26 of environmental peptides and 6/7 of the human peptides induced proliferation of T cells expressing Ob.1A12 and/or Ob.2F3, and this is a huge proof of the validity of this analysis! These 33 peptides are reported in figure 7. This is the last step of the universal immune testing, the one that from the TCR leads to the epitopes. As you have seen, a huge set of different peptides from different sources is linked to each single TCR, in other words, crossreactivity is an intrinsic property of TCR. This also means that lymphocyte transformation tests (LTTs), widely used in Europe for the detection of infections like Borrelia burgdorferi and others, bear a high risk of false-positive results and require a process of experimental and theoretical validation, that is currently lacking (see also this post on this issue).

Crossreactive epitopes.JPG
Figure 7. A set of 33 peptides (both human and environmental) predicted to be specific epitopes for both Ob.1A12 and Ob.2F3. From (Birnbaum ME et al. 2014).

We are now ready to fully appreciate the pilot data that Mark Davis presented at the Symposium on CD8 T cell clonal expansion in ME/CFS and in chronic Lyme.

7. We have a hit!

Mark Davis, along with Jacob Glanville and José Montoya, has sequenced TCRs from the peripheral blood of 50 ME/CFS patients and 49 controls (first step of the universal immune testing, remember?), then they have clustered them using the GLIPH algorithm (second step). They have found 28 clusters with more than 2500 similar sequences each, where each cluster collects multiple sequences from the same individual as well as (which is perhaps more important) sequences from different patients (figure 8). The cluster that I have circled in red, for instance, is a collection of more than 3000 similar TCRs. The presence of this wide clusters in ME/CFS patients, compared to healthy controls, represents an indirect proof of a specific T cell response to some common trigger in this group of patients, which might be a pathogen or a tissue of the body (or both).

Clustered TCR
Figure 8. In ME/CFS, TCRs sequences from 50 patients form 28 clusters with more than 2500 similar sequences, and this is clearly not the case in healthy controls. This point to some specific immune response to a pathogen or to a human tissue (or both). This slide is from the talk by Mark Davis.

Among these 50 ME/CFS patients, Davis and colleagues selected 6 patients with similar HLA genes (figure 9, left), 5 females among them, and studied their TCRs deeper. In the right half of figure 9, you can see for each patient the degree of CTL clonal expansion. Remember that in healthy controls only about 10% of CTLs is composed by clones of a few cells (figure 4, first raw), while here we see that about 50% of all CTLs is composed by clones. So, a “marked clonal expansion” of CD8 T cells, as Davis said.

ME subjects CD8
Figure 9. On the left: 6 MECFS patients with similar HLA genes have been selected. Patient ID is reported in the first column on the left, the second column indicates the age of each patient, the third indicates the gender, the fourth column is about exposure to cytomegalovirus, the third one is on MHC I genes. On the right: analysis of clonal expansion of CD8 T cells for each of the six patients. There is a marked clonal expansion (about 50%) compared to healthy controls (about 10%).

Sequences of α and β chains of TCRs from three of the six patients (patients L4-02, L4-10, and L3-20) are reported in figure 10 (I have verified that in fact these are sequences of α and β chains of human TCRs using them as query sequences in standard protein BLAST).

TCR epitope.png
Figure 10. Beta chains (first column) and respective α chains (fifth column) from 3 ME/CFS patients (L4-02, L4-10, and L3-20, last column).

So, we have seen so far the first two steps of the universal immune testing in ME. What about the third step? In his talk, Mark Davis didn’t present any particular epitope, he just showed a slide with what likely is the selection of the epitopes from the peptide library (see paragraph 6.3) by one of the TCRs reported in figure 10. This selection is reported in figure 11, but from that picture, it is not possible to gather any information about the identity of these epitopes. As you probably remember from paragraph 6.3, the analysis of the peptides selected by a TCR among the peptide library allows the identification of a substitution matrix that can be used to select all the possible epitopes of that specific TCR, from the peptide database. This last crucial step has to be performed yet, or it has been already performed, but Davis has not communicated the preliminary results during his talk. Recently new resources have been made available by Open Medicine Foundation, for this promising research to be further pursued, among other projects (R). The aim here, as already said, is to find the antigen that triggers this T cell response. As Mark Davis said, it might be an antigen from a specific pathogen (perhaps a common pathogen that comes and goes) that elicits an abnormal immune response which ends targeting some host tissue (microglia, for instance), thus leading to the kind of immune activation that has been recently reported by Mark Davis himself and others in ME/CFS (Montoya JG et al. 2017). The idea of a common pathogen triggering a pathologic immune response is not new in medicine, and rheumatic fever (RF) is an example of such a disease: RF is an autoimmune disease that attacks heart, brain and joints and is generally triggered by a streptococcal throat infection (Marijon E et al. 2012). The other possible avenue is, of course, that of an ongoing infection of some kind, that has yet to be detected. As said (see par. 6.1), CD8 T cell clonal expansion is present in both acute infections (like early Lyme disease) and autoimmune diseases (like MS) (figure 4), so we have to wait for the antigen identification if we want to understand if the CTLs activity is against a pathogen and/or against a host tissue.

Figure 11. In this picture, we can see the selection, through several rounds, of a bunch of peptides by a particular TCR from a ME patient. The selection takes place among a huge collection of peptides presented by HLA-A2 (MHC I) expressed by yeast cells. At each round the number of possible peptides is smaller.

8. Chronic Lyme does exist

It has probably been overlooked that in his talk, Mark Davis reported also very interesting data on post-treatment Lyme disease syndrome (PTLDS, also known as chronic Lyme disease). In particular, he found a marked clonal expansion in CD8 T cells of 4 PTLDS patients (about 40% of total CTLs) as reported in figure 12: consider that in this case, blue slices represent unique T cells, while all the other slices represent clones! All that has been said about CD8 clonal expansion in ME/CFS does apply in this case too: it might be the proof of an ongoing infection – perhaps the same B. burgdorferi, as suggested by several animal models (Embers ME et al. 2017), (Embers ME et al. 2012), (Hodzic E et al. 2008), (Yrjänäinen H et al. 2010) – or a coinfection (a virus?) or it could be the expression of an autoimmune reaction triggered by the initial infection. This has still to be discovered, running the complete universal immune testing, but what is already clear from figure 12 is that PTLDS is a real condition, with something really wrong going on within the immune response: chronic Lyme does exist.

Figure 12. CD8 T cells clonal expansion in four chronic Lyme patients: there is a marked clonal expansion that stands for T cell activity against a pathogen or against host tissue.

9. Conclusions

Mark Davis and other researchers have developed a complex assay that is able to sequence TCRs from patients, cluster them into groups of TCRs that react to the same antigens, and discover the antigens that triggered that particular T cell response. This assay is a kind of universal immune testing that is theoretically able to recognize if a person (or a group of patients) presents an immune response against a pathogen or against one of his own tissues (or both). This approach has already given pilot data on an ongoing CD8 T cell activity in ME/CFS patients and in chronic Lyme patients and will hopefully identify the trigger of this immune response in the near future. Whether ME/CFS is an ongoing infection, an autoimmune disease or both, the universal immune testing might be able to tell us. This new technology is for immunology, what whole genome sequencing is for genetics, or metabolomics is for molecular diseases: it doesn’t search for a particular pathogen or a particular autoimmune disease. No, it searches for all possible infections and immune disorders, even those that have yet to be discovered.

As mentioned, the Open Medicine Foundation is funding Mark Davis’ research, among other research projects. Please consider a donation to the Open Medicine Foundation: donate.


Mitocondri belgi

Mitocondri belgi

Un piccolo studio (10 pazienti) senza gruppo di controllo, da parte di un prof. di endocrinologia del Ghent University Hospital, Belgio (Frank Comhaire, 2017). E’ stato somministrato un insieme di integratori contenente anche un ingrediente X (estratto da un’alga, senza altre indicazioni) che dovrebbero inibire le piruvato deidrogenasi chinasi (PDK) (figura 1). Gli altri ingredienti sono vit. B1, acido alfa lipoico, acetil-L-carnitina e ossidoriduttasi ubiqiunone Q10.

glucose test.jpg
Figura 1. Il farmaco proposto in questo studio dovrebbe attivare il piruvato deidrogenasi, inibendo le piruvato deidrogenasi chinasi .

Ricordo che le PDK sono state chiamate in causa nell’ultimo studio norvegese sulla ME/CFS in cui si è potuto documentare una riduzione della attività dell’enzima piruvato deidrogenasi, verosimilmente riconducibile alla iperattività di alcune PDK (in particolare PDK1, PDK2 e PDK4) (vedi qui).

Cinque dei dieci pazienti hanno risposto al farmaco, normalizzando la propria funzionalità, per gli altri 5 sono state trovate diagnosi alternative (ipogonadismo, burn-out, osteoporosi, CMV attivo, focolaio batterico nei seni nasali) e sono stati avviati i trattamenti del caso, con beneficio.

Nel complesso lo studio è quantomeno stuzzicante, una lettura edificante. Ma alcune cose lasciano perplessi.

Per esempio, come è possibile che siano state fatte le diagnosi di ME/CFS a livello universitario per poi scoprire che i pazienti avevano altro, tra cui un palese ipogonadismo in un ragazzo di 29 anni? Secondo, in un paziente si confonde apparentemente la fibromialgia con la ME/CFS. Terzo, le indagini che hanno portato a diagnosi alternative sono state fatte solo a coloro che non rispondevano al nuovo farmaco.

glucose test
Figura 2. La linea rossa indica il livello di lattato nel sangue dopo assunzione di glucosio, nei pazienti esaminati in questo studio. Le misure sono state fatte sul sangue, prima dell’ingestione di 75 g di glucosio (tempo 0) e dopo 30, 60, 90, 120, 180 e 240 minuti.

Da segnalare anche che l’autore propone 3 possibili test per rilevare la ridotta attività del piruvato deidrogenasi nella ME/CFS:

  1. un test che prevede la misura del piruvato e dell’acetil-coenzima A nei monociti (che l’autore indica come in fase di sviluppo);
  2. un test in cui si misura il lattato dopo somministrazione di glucosio: se c’è un blocco nel piruvato deidrogenasi, il lattato dovrebbe aumentare in questo test (come viene anche indicato da alcune misure fatte sui pazienti dello studio, figura 2);
  3. testare il farmaco sui pazienti, se rispondono allora le PDK erano iperattive.

Antibodies to adrenergic and muscarinic receptors in ME/CFS

Antibodies to adrenergic and muscarinic receptors in ME/CFS

A translation to Dutch of this article is available here.

Latest news

During the Community Symposium on the molecular basis of ME/CFS (R) two different groups of researchers reported on an increased level of antibodies to beta adrenergic and muscarinic receptors in sera from ME/CFS patients vs healthy controls (Figure 1). These new data have been collected independently by Alan Light (University of Utah) and Jonas Bergquist (Uppsala Universitet). Bergquist also reported that these autoantibodies can’t be found in cerebrospinal fluid from ME/CFS patients.

Figure 1. Two slides from the symposium: on the left data from Uppsala Universitet, on the right data from a group of patients studied by Alan Light (University of Utah).

What was already known on these autoantibodies

The presence of a higher than normal reactivity of sera from ME/CFS patients to muscarinic receptors was reported for the first time by a Japanese group, more than a decade ago (Tanaka S et al. 2003) and it has been confirmed recently in a work by University of Bergen (Norway) and Charité University (Germany) (Loebel M et al. 2016). In particular, while Tanaka and colleagues measured an increased level of autoantibodies against muscarinic cholinergic receptor 1 (CHRM1) in about half of patients, the other group described an increase in reactivity of sera to subtypes M3 and M4, in a subset of patients (Figure 2). They used two completely different assays, as we will see later, and this might be the reason for the different results.

autoantibodies 2
Figure 2. An increase in reactivity of sera from ME/CFS patients to M1 cholinergic receptors was reported by Tanaka and colleagues in 2003 (left). Loebel and colleagues found an increase in reactivity to M3, M4 cholinergic receptors and beta 2 adrenergic receptors in 2016 (right).

As you can see from figure 2, the study by Loebel et al. also indicated an increase in antibodies to beta adrenergic receptors (subtype 2), in agreement with the latest data from Light and Bergquist. In this regard, it is worth noting that autoantibodies to muscarinic receptors M2 and M3, and to beta adrenergic receptors (subtype 1 and 2) have been already reported in orthostatic hypotension (OH) (Yu X et al. 2012), (Li H et al. 2012) and that antibodies to beta 2 adrenergic receptors have been identified in patients with postural-orthostatic tachycardia syndrome (POTS) (Li et al. 2014). This means that this group of autoantibodies is associated with orthostatic intolerance (POTS and/or OH), but orthostatic intollerance is part of the clinical picture of ME/CFS (IOM 2015) and those patients who have a diagnosis of POTS often have many features in common with ME/CFS patients, see for instance (Okamoto L et al. 2012), (Wise S et al. 2015). So, it might be conceivable that these autoantibodies play a role in the pathogenesis of some symptoms in a subgroup of patients, although this has not been proven, so far.

Molecular mimicry?

We don’t know the reason why the immune system of some ME/CFS patients reacts with these receptors, but Alan Light suggested, during the symposium, that a possible source for these antibodies might be a mechanism known with the name of molecular mimicry (MM). The basic idea behind MM is that B cells can erroneously produce antibodies to human proteins when epitopes of an infectious agent closely resemble epitopes found in the host (Rose NR 1998). MM is currently believed to explain the pathogenesis of Guillain-Barré syndrome, where lipo-oligosaccharides on the Campylobacter jejunii outer membrane seems to elicit (in predisposed individuals) an immune response to human gangliosides, due to the similarity between these antigens (Van den Berg B et al. 2014). Now, if molecular mimicry was involved in the origin of antibodies to beta 2 adrenergic receptors, which could be the epitope on the receptor? And which the pathogen-borne antigen? In order to provide a possible answer to this question we have to consider that the regions of a receptor that can be involved in B cell autoimmunity are only those that have extracellular exposure; the other regions are immersed in plasma membrane and in cytoplasm, so they can’t interact with antibodies. As you can see from Figure 3, beta 2 adrenergic receptor (ADRB2) has four extracellular regions, in particular peptides 1-34, 96-106, 175-196, 299-305. In general, epitopes are mainly conformational and that means that they are regions of the protein surface, produced by the folding of the protein itself. Nevertheless, in our example we will search only for linear epitopes.

Beta 2
Figure 3. Schematic representation of ADRB2, from (Rasmussen G et al. 2007). You can notice the extracellular peptides 1-34 (the N-terminus), 96-106 (loop 1), 175-196 (loop 2), 299-305 (loop 3).

I have used QuickBLASTP provided by NCBI, with default settings (E=100, a word of 6 letters, BLOSUM62 as substitution matrix) and I have considered for each of the four extracellular peptides both the sequence of residues from the N-terminus to the C-terminus, and the inverted sequence. We obtain as the only match the protein sensor histidine kinase MtrB belonging to Pseudonocardia sp. Ae331_Ps2 (R) (Figure 4). I can’t find this particular protein in UniProt, but if it was a membrane protein and if peptide 67-77 was exposed to the extracellular space, this peptide could perhaps be a candidate as a trigger for anti-ADRB2, according to the MM theory. It is important to note here that although molecular mimicry is a popular theory (perhaps because of its simplicity) it has been proven to be a cause of autoimmnity only in Guillain-Barré syndrome.

molecular mimicry
Figure 4. Peptide 2-12 of the ADRB2 receptor resembles peptide 67-77 of sensor histidine kinase MtrB (from Pseudonocardia sp. Ae331_Ps2).

So, what about a test for these autoantibodies?

If antibodies to adrenergic and muscarinc receptors were involved in the pathogenesis of some cases of ME/CFS, it would be interesting for patients to test for them. In this regard, it is worth noting that the measure of antibodies to membrane receptors should be done using an assay in which these receptors are expressed by living cells in their physiological position (CBA, cell based assay). In fact, with assays in which receptors are coated on plates we may have both false positives (due to the fact that sera react with peptides that are not in the extracellular domain) and false negatives (due to protein denaturation, which leads to the formation of epitopes that would not be present if the protein were correctly folded). The superiority of CBA over the other kind of test is well accepted in the case of anti-MOG antibodies (Ramanathan S et al 2016). It is worth noting that the study by Loebel et al. used a CBA, while the previous one (Tanaka et al.) used recombinat proteins coated on plates, and this could be the reason for the discrepancy between the results of the two studies (figure 2). As far as I know, there are no commercial CBA assays for anti-muscarinic cholinergic receptors and beta adrenergic receptors, at present. The only assay available does not seem to be a CBA, from the provided documentation (R).

Figure 5. I have reported in yellow the epitope predicted by DiscoTope 2.0 on the 3D structure of ADRB2 (PDB ID: 2R4R chain A). I have also indicated what part of the molecule is outside the cell, what is inside the membrane and what is inside the cell.

In silico experiment

We will now try to simulate what could happen with a test for the search of anti-ADB2R antibodies, if the protein was coated on a plate. We will use the prediction of DiscoTope 2.0, which is a software that calculates all possible B cell epitopes of a given protein, using both the geometry of the protein (in particular a parameter called protrusion index, calculated from the protein’s ellipsoid of inertia) and statistical data on known B cell epitopes (Kringelum, et al., 2012). If we use the 3D structure of ADB2R experimentally determined in (Rasmussen et al. 2007) with standard settings, DiscoTope predicts peptide 231-242 as the only possible epitope (consider that the experimental 3D structure of ADB2R is incomplete). As you can see from figure 5 this peptide belongs to the intracellular domain of the receptor and so it by no means could be a B cell epitope, in vivo. In conclusion, according to this simulation, there is a risk of false positive results with any test that uses recombinat ADB2R coated on a plate.


I dati grezzi dello studio Hanson

I dati grezzi dello studio Hanson


Il gruppo di Maureen Hanson (Cornell University) ha pubblicato alcuni mesi fa uno studio in cui 361 metaboliti sono stati quantificati nel sangue di 17 donne con ME/CFS (e 15 controlli sani, corrispondenti per sesso ed età) (Germain A et al. 2017). La tecnica utilizzata è la spettroscopia di massa, e questo studio si aggiunge ad altri 3 lavori analoghi sulla ME/CFS pubblicati in questi ultimi 11 mesi (Naviaux R et al. 2016), (Øystein Fluge .et al. 2017), (Yamano E et al. 2016). Lo studio Hanson e lo studio Naviaux sono per ora i due con il maggior numero di metaboliti esaminati e i loro risultati sono coerenti con un complessivo ipometabolismo: circa l’85% dei metaboliti esaminati nei due studi sono ridotti in modo significativo rispetto al controllo sano. I percorsi metabolici coinvolti sono numerosi, dalla ossidazione degli acidi grassi (beta-ossidazione), alla ossidazione degli amminoacidi, alla sintesi di fosfolipidi (i componenti delle membrane cellulari). In figura 1 trovate un confronto fra lo studio Naviaux e lo studio Hanson con analogie e differenze.

Hanson vs Naviaux.png
Figura 1. Confronto fra lo studio Naviaux e lo studio Hanson, mostrato dalla stessa Hanson durante un webinar.

I dati grezzi

In questo post non esaminerò lo studio Hanson nel dettaglio, piuttosto voglio proporre una rianalisi statistica di una piccola parte dei dati grezzi, ovvero della misura dei 361 metaboliti nelle 32 persone complessivamente esaminate. I dati sono stati resi disponibili al pubblico (cosa lodevole) in formato .XLSX. Il file è qui.

Figura 2. Riduzione significativa di oxaloacetato e succinato nei pazienti ME/CFS rispetto ai controlli sani. L’analisi statistica e i grafici delle distribuzioni sono di Paolo Maccallini.

La mia rianalisi statistica della glicolisi e del ciclo di Krebs

Per la mia analisi statistica dei dati grezzi mi sono concentrato sui percorsi metabolici della glicolisi (piruvato, lattato) e del ciclo di Krebs (aconitato, succinato, fumarato, oxaloacetato). L’analisi si basa sulla assunzione di una distribuzione normale dei valori, utilizzanto il t-test (one-tailed) per il calcolo del valore p. I valori p e le distribuzioni dei dati sono riportati in figura 2. Come si vede, c’è una tendenza all’aumento dei prodotti finali della glicolisi in alcuni pazienti (piruvato, lattato) che tuttavia non è significativa nel complesso. Si apprezza altresì una tendenza alla riduzione dei metaboliti intermedi del ciclo di Krebs, ma solo il succinato e l’oxaloacetato sono ridotti in modo significativo. E’ interessante notare che una tendenza alla riduzione dei metaboliti del ciclo di Krebs è coerente con quanto riportato in (Yamano E et al. 2016) con una metodica simile, e quanto riportato in questo blog, utilizzando la spettroscopia di massa su urine in tre pazienti, due maschi e una femmina (vedi qui).

Il test diagnostico per la ME/CFS?

Il test diagnostico per la ME/CFS?

Quella che segue è una sintesi estrema di una intervista a Ronald Davis (del 15 giugno) che potete ascoltare qui.

Un piccolo apparecchio (detto nano-needle) permette di ricondurre la misura del metabolismo di una coltura cellulare a una misura di impedenza (l’equivalente, nei conduttori sottoposti a corrente alternata, della resistenza elettrica). Se si prendono le cellule dei pazienti ME/CFS e le si espone a uno stress osmotico (aggiungendo NaCl), l’impedenza sale in modo anomalo: con cellule di persone sane non si ha aumento di impedenza.

Questo apparato sperimentale – secondo Davis – costituisce il test diagnostico per la malattia. Economico, semplice e sensibile. La specificità rispetto ad altre malattie al momento non sembra nota.

La malattia si profilerebbe come un disordine del metabolismo indotto dal sistema immunitario (cellule B e/o cellule T).

Nano-needle ha un costo irrisorio, ma richiede il collegamento a un altro apparecchio (basta un iPhone) per fornire la misura.

Citochine, TGF β 1 e ME/CFS

Citochine, TGF β 1 e ME/CFS


Quattro pazienti con diagnosi di ME/CFS e durata di malattia superiore ai 3 anni si sono sottoposti alla misura di un set di 9 citochine presso un laboratorio ospedaliero italiano. Tutti loro presentano un livello elevato di TGF β1, in accordo con due studi precedenti. Dopo aver riassunto i risultati di un precedente studio sui livelli di 51 citochine nel sangue di pazienti ME/CFS e averli confrontati con i risultati di questa piccola indagine, discuto il possibile ruolo del TGF β1 nella ME/CFS, dalla sua funzione inibitoria della citotossicità delle cellule NK, al suo valore quale indice di danno cerebrale, al suo possibile ruolo nella disfunzione della matrice extracellulare.


Negli anni sono stati condotti numerosi studi sul livello di citochine nel sangue periferico e nel liquido spinale dei pazienti ME/CFS, con risultati contraddittori. Nel 2015, alcuni dei maggiori esperti di questa patologia (tra cui Hornig, Lipkin, Montoya, Komaroff, e Peterson) hanno pubblicato un lavoro sulla misura di 51 citochine in 298 pazienti e in 348 controlli sani (sangue periferico). I pazienti sono stati divisi in un gruppo di 52 persone con una malattia di durata minore o uguale a 3 anni e in un altro gruppo (246 pazienti) con una malattia di durata maggiore di 3 anni. I ricercatori hanno riscontrato uno stato di attivazione immunitaria nel primo gruppo, e di esaurimento immunitario nel secondo (Hornig M et al. 2015). In questo studio, il gruppo di controllo è stato costruito tenendo conto non solo dell’età e del sesso, ma anche della collocazione geografica e della stagione al momento del prelievo di sangue. Poiché oggi sappiamo che più di 4000 geni immunitari vengono espressi con un livello che oscilla in funzione della stagione e della latitudine (Dopico XC et al. 2014), la precauzione di tenere in conto anche latitudine e stagione è indice di qualità dello studio. Per questo motivo, per la dimensione dei gruppi di persone esaminate, e per la varietà di citochine misurate, tendo a considerare il lavoro di Hornig e colleghi come il punto di riferimento, quando si tratta di citochine nella ME/CFS.

Nove citochine e quattro pazienti

Prima di riassumere i risultati dello studio Hornig, riporto la misura di 9 citochine in quattro pazienti ME/CFS italiani (3 maschi e una femmina) con durata di malattia superiore ai 3 anni (vedi tabella 1). Come indicazione della gravità della patologia, per ogni paziente è indicato il livello di abilità della scala del dr. Bell, che si può trovare in italiano in questa pagina. Questa selezione di citochine è stata effettuata lo scorso febbraio da me e da un altro paziente, scegliendo i parametri immunitari dello studio Hornig disponibili presso il laboratorio analisi dell’ospedale di Padova. Nella prima colonna si trovano i nomi delle citochine analizzate e affianco un simbolo in parentesi quadra il cui significato è secondo quanto segue: [<] indica una riduzione del metabolita nel sangue dei pazienti dello studio Hornig rispetto al controllo sano, associata a un valore p<0.05; il simbolo [<<] indica una riduzione associata a un valore p<0.01; il simbolo [=] indica che non c’è differenza tra malati e controllo sano. Il parametro TGF β1 non è stato misurato, come vedremo, nello studio Hornig.  Questo è un peccato, perché il valore di TGF β1 è l’unico ad essere alterato (aumentato) in ciascuno dei 4 pazienti. Specifico che poiché i pazienti qui riportati hanno una durata di malattia maggiore di 3 anni, i dati dello studio Hornig considerati sono solo quelli del gruppo di pazienti con una durata di malattia superiore ai 3 anni.

P1 (M, 37)  P2 (F, 49) P3 (M, 43) P4 (M, 27) rif (ng/l)
INF γ                     [<] <2.0 <2.0 <2.0  3.2 [0.0 – 15.6]
IL 1α                      [=] <2.0 <2.0 <2.0 <2.0 [0.0 – 3.9]
IL 1β                      [<] <5.0 <5.0 <5.0  <5.0 [0.0 – 5.0]
IL 2                        [=] <9.9  13.8 <9.9  <9.9 [0.0 – 9.9]
IL 4                        [=] <1.3 <1.3 <1.3  <1.3 [0.0 – 1.3]
IL 6                      [<<] <2.0 <2.0 <2.0  <2.0 [0.0 – 5.9]
IL 8                        [=] 7 6 <5 6 [0.0 – 62.0]
TGF β1                  [?] 58.1 77.4  48.6  70.9 [6.0 – 34.0]
TNFα                     [=] 10.7 6.7  – 5.3 [0.0 – 8.1]
Scala di Bell 20-30 20-30 40 20-30 [0 – 100]

Tabella 1. Misura di nove citochine in 4 pazienti ME/CFS con malattia di durata superiore ai 3 anni. Le misure sono state effettuate presso l’ospedale di Padova. E’ indicato il sesso, l’età e il valore della scala di Bell dei quattro pazienti (P1, 2, 3, 4). Sono evidenziati i valori fuori norma.

Cinquantuno citochine e 298 pazienti

Vediamo ora nel dettaglio i risultati dello studio Hornig. Come si vede in figura 1, delle 51 citochine misurate nel sangue, solo 24 presentano una differenza significativa fra i gruppi di malati (di breve e lunga durata) e il controllo sano (vedi figura 1). In rosso ho evidenziato quali tra queste 24 sono state misurate anche nei nostri 4 pazienti.

Figura 1. Le 24 citochine dello studio Hornig in cui si riscontrano differenze significative tra pazienti di breve durata (blu), pazienti di lunga durata (rosso) e controlli (grigio). Nei riquadri rossi le citochine misurare anche nei nostri quattro pazienti (tabella). Queste citochine sono tutte proinfiammatorie, ad eccezione delle quattro nel riquadro nero (anti infiammatorie). * indica un valore p < 0.05, ** sta per p < 0.01, *** sta per p < 0.001, **** sta per p < 0.0001.

Lo studio non evidenzia differenze significative tra controlli e malati, a meno che non si dividano i malati in due gruppi: un gruppo in cui la malattia dura meno di tre anni e uno in cui la durata è superiore ai tre anni. Non appena si faccia questa distinzione, i pazienti di breve durata risultano in uno stato di attivazione immunitaria (citochine elevate), mentre quelli di lunga durata sembrano in una condizione di esaurimento immunitario (citochine ridotte), sia nel ramo proinfiammatorio, che in quello anti infiammatorio. Gli autori hanno ipotizzato che l’esaurimento immunitario possa essere una conseguenza della attivazione immunitaria che si verifica nei primi tre anni di malattia, coerentemente con quanto descritto per le cellule T CD8 durante infezioni croniche (Utzschneider DT et al. 2013). Per quanto riguarda i nostri 4 pazienti, le citochine INFγ, IL 1α, IL 6, e IL 8 si trovano nella parte bassa dell’ambito di normalità e quindi potremmo ritenere questi valori coerenti con quanto rilevato da Hornig e colleghi. Tuttavia, il paziente uno presenta un valore alto di TNFα. Questa citochina proinfiammatoria ha molteplici funzioni (vedi tabella 2) e il suo livello è elevato nella fase attiva del Lupus (Umare V et al. 2014) e della artrite reumatoide (Wendling D et al. 2015).

TNF-α Macrofago, neutrofilo, cellula Th1 Macrofago Stimola la sintesi di IL-12
Natural Killer Stimola la sintesi di IFN-γ
Parete dei vasi Induce la sintesi di SEL
Cell. Dendritica Viene attivata

Tabella 2. Alcune funzioni del TNF alpha. Nella seconda colonna le cellule che lo sintetizzano, nella terza le cellule bersaglio, nella quarta le funzioni espletate.

TGF beta

Il riscontro più interessante delle misure fatte sui 4 pazienti della tabella 1 è che tutti presentano un valore elevato di transforming growth factor beta 1 (TGF β1). Il TGF β viene sintetizzato in una forma inattiva che richiede l’intervento di un enzima proteolitico per trasformarsi nella sua forma attiva (Whal SM 2007) che è coinvolta nella proliferazione cellulare, nella risposta immunitaria/infiammazione, nella embriogenesi, nella integrità vascolare e nel rimodellamento della matrice extracellulare (Flavell RA et al. 2010), (Lafyastis R 2014).

Livello del TGF β nella ME/CFS

Il TGF β è presente in quattro isoforme, TGF β 1, 2, 3, 4 e lo studio Hornig ne ha misurato il livello complessivo. Questo livello è normale nei pazienti presi nel loro complesso, mentre risulta addirittura ridotto se si considerano solo i pazienti di lunga data (Tabella S6). Un risultato analogo è stato appena riportato in uno studio su 50 pazienti ME/CFS e 50 controlli, condotto dallo stesso gruppo di ricerca (Nagy-Szakal D et al. 2017), vedi TabellaS4. Esistono poi diversi studi precedenti (vedi tabella 3) dei quali tre (di cui due su soli 10 pazienti) hanno riportato un incremento del TGF beta (Chao CC et al. 1991), (Peterson D et al. 1994), (Bennett AL et al. 1997). Potremmo dunque assumere che effettivamente il livello complessivo di TGF β 1, 2, 3, 4 sia normale nella ME/CFS. Ma cosa si può dire della isoforma 1? Esistono almeno due studi (tabella 4) che hanno misurato esclusivamente questa isoforma in complessivi 56 pazienti e 43 controlli, riportandone un aumento del livello nel sangue periferico dei pazienti (Kennedy G et al. 2004), (White PD et al. 2004). Ciò è in accordo con quanto misurato nei nostri 4 pazienti (tabella 1). E’ possibile che mentre il livello del TGF β 1 aumenta, il livello complessivo delle isoforme del TGF β rimanga normale o addirittura si riduca? Credo che altri studi dovrebbero elucidare questo aspetto.

 Fonte Casi/
Livello del TGF β Campione
(Nagy-Szakal D et al. 2017) 50/50 nessuna differenza siero
(Hornig M et al. 2015) 298/348 nessuna differenza siero
(Bennett AL et al. 1997) 93/80 aumentato nei casi (p<0.01) siero
(MacDonald KL et al. 1996) 47/47 nessuna differenza siero
(Swanink C et al. 1996) 76/69 nessuna differenza siero
(Peterson D et al. 1994) 10/10 aumentato nei casi (p<0.01) siero
(Chao CC et al. 1991) 10/10 aumentato nei casi (p<0.01) siero

Tabella 3. Studi che hanno indagato il livello del TGF β (siero) nei pazienti ME/CFS.

 Fonte Casi/
Livello del TGF β 1
(White PD et al. 2004) 9/9 aumentato nei casi (p<0.001) siero/plasma
(Kennedy G et al. 2004) 47/34 aumentato nei casi (p=0.005) plasma

Tabella 4. Studi che hanno indagato il livello del TGF β 1 nei pazienti ME/CFS.

TGF β1 e NK

Di particolare interesse nel nostro caso è il ruolo che il TGF β1 gioca nella regolazione e soppressione della citotossicità delle cellule NK (Bellone G et al. 1995), essendo questo parametro ridotto nella ME/CFS (Caligiuri et al, 1987), (Maher et al, 2005), (Strayer et al, 2015), (Nguyen T et al. 2016). Quindi un aumento del TGF β1 potrebbe forse essere una delle cause della ridotta citotossicità delle NK nella ME/CFS.

TGF β1 e cervello

La sintesi cerebrale di TGF β1 aumenta a seguito di danno al  sistema nervoso centrale: ad esempio il livello sierico di TGF β1 risulta aumentato nella malattia di Alzheimer (Chao CC, et al. 1994) e nella retinopatia diabetica in pazienti con diabete di tipo I (Zorena K et al. 2013). Nel complesso si ritiene che TGF β1 eserciti una azione neuroprotettiva e sia un indice di danno neurologico, ma si è ipotizzato anche che la stessa molecola eserciti una azione detrimentale nei confronti della vasculatura cerebrale (Rustenhoven, J et al. 2016).

TGF β e matrice extracellulare

Altro aspetto di interesse è la interazione fra il TGF β e la matrice extracellulare, in particolare la fibrillina: la fibrillina sembra sequestrare il TGF β (Wipff J et al 2009), tanto che un difetto nella fibrillina (come nella sindrome di Marfan) è associato a un aumento del TGF β nel sangue (Robinson BN et al. 2005). Una possibilità è dunque che un difetto nella matrice extracellulare dei pazienti ME/CFS sia la causa dell’aumento del TGF β1. Ma perché si dovrebbe sospettare un difetto di questo tipo nella ME/CFS? La matrice extracellulare sembra implicata perché in questi pazienti esiste una prevalenza insolitamente elevata di casi di ipermobilità (vedi qui). Da notare a tal proposito che la paziente con il livello più elevato di TGF β1 del nostro studio (tabella 1) presenta un sospetto di EDS III (una malattia genetica della matrice extracellulare). I pazienti con EDS di tipo vascolare (un’altra forma di EDS) presentano valori elevati di TGF β1, che si ipotizza possano essere una conseguenza del danno vascolare di questi pazienti (Morisette R et al. 2014). Anche questo dato desta interesse, non appena si considera che nella ME/CFS è stata descritta una disfunzione endoteliale nelle grandi e piccole arterie (Newton DJ et al. 2011). Il livello elevato di TGF β potrebbe dunque anche essere una conseguenza di questa anormalità.


La misura di un pannello di 9 citochine nel sangue di 4 pazienti ME/CFS con durata di malattia superiore ai tre anni ha permesso di rilevare un aumento del valore del TGF β1 in ciascuno di essi, in accordo con due studi precedenti. Il significato di questa alterazione immunitaria nella ME/CFS (ammesso ve ne sia uno) non è chiaro, ma potrebbe essere legato alla ridotta citotossicità delle NK, a danni neurologici, a difetti nella matrice extracellulare, o ad anormalità nei vasi sanguigni.

Mitocondri norvegesi, terzo atto: qualcosa nel sangue

Mitocondri norvegesi, terzo atto: qualcosa nel sangue

Per una lettura veloce andare direttamente ai paragrafi 7 e 8.


Nei precedenti due articoli (qui e qui) sul lavoro pubblicato da Fluge, Mella e collaboratori (Fluge et al. 2016) abbiamo visto che:

  • qualcosa induce l’espressione di una serie di meccanismi che riducono la funzione del piruvato deidrogenasi, costringendo i pazienti ME/CFS a bruciare amminoacidi al posto dello zucchero. Ma dei sistemi di compenso intervengono per cercare di riportare il metabolismo energetico alla normalità, senza riuscirci. I sistemi di compenso sono diversi fra maschi e femmine, ma il difetto metabolico a monte è lo stesso nei due sessi.

All scopo di individuare la molecola (o le molecole) a cui ricondurre l’origine di questa disfunzione, il gruppo di scienziati ha preparato delle colture di cellule umane provenienti da muscoli scheletrici, e le ha esposte al siero di 12 pazienti ME/CFS e di altrettanti controlli sani. Le colture cellulari sono state poi sotToposte a due tipi di misure:

  1. il livello di consumo di ossigeno (OCR, oxygen consumption rate), che indica il livello di attività dei mitocondri;
  2. il livello di acidificazione dello spazio extracellulare (ECAR, extracellular acidification rate) che è una misura surrogata del livello di acido lattico prodotto.

Entrambi i parametri sono stati misurati sia in presenza di glucosio, che in presenza di amminoacidi. Nel complesso sono state fatte misure in quattro condizioni sperimentali.

2.Primi due esperimenti: amminoacidi e glucosio

Le cellule muscolari a riposo – esposte al siero dei pazienti – e coltivate in presenza di amminoacidi, presentano un consumo di ossigeno maggiore delle cellule esposte al siero di controlli sani (figura1, B.I). Aggiungendo il glucosio (figura 1, B.II), la situazione non cambia: ancora la respirazione delle cellule muscolari esposte al siero dei pazienti è maggiore di quella delle cellule muscolari esposte al siero di controlli sani. La sintesi di acido lattico non differisce fra le cellule esposte a siero di pazienti e cellule esposte a siero di controlli sani (figura 1, D.I e D.II).

coltura celulare 2.jpg
Figura 1. Consumo di ossigeno e nei quattro esperimenti (B) e sintesi di acido lattico (D).

3.Terzo esperimento: blocco dell’enzima ATP sintasi

Il blocco dell’enzima ATP sintasi, il quale si occupa di convertire ADP in ATP alla fine della catena respiratoria, riduce drammaticamente il consumo di ossigeno in entrambe le colture, ma quella con siero di pazienti è meno colpita (figura 1, B.III). Vale la pena ricordare che la subunità beta dell’enzima ATP sintasi è sovra espressa nei pazienti ME/CFS (vedi qui), e questo potrebbe essere legato all’effetto benefico del siero dei pazienti in questo esperimento. La produzione di lattato in questo esperimento è maggiore nelle cellule esposte a siero di pazienti (figura 1, D.III).

4.Quarto esperimento: blocco della catena respiratoria

I ricercatori hanno esposto le colture cellulari a una molecola (la CCCP) che inibisce la catena respiratoria. Come forma di compenso le colture cellulari aumentano drasticamente il consumo di ossigeno ma la coltura esposta al siero ME/CFS consuma più ossigeno (figura 1, B.IV) e produce più lattato (figura 1, D.IV).

coltura celulare 3.jpg
Figura 2. Sottrazioni fra misure effettuate negli esperimenti su coltura cellulare.


I ricercatori hanno poi effettuato i seguenti calcloli, i cui risltati sono riportati in figura 2:

  • consumo di ossigeno dell’esperimento II meno quello dell’esperimento III (figura 2, E);
  • consumo di ossigeno dell’esperimento IV meno quello dell’esperimento III (figura 2, E);
  • produzione di acido lattico dell’esperimento II meno quello dell’esperimento I (figura 2, F);
  • produzione di acido lattico dell’esperimento III meno quello dell’esperimento II (figura 2, F);
  • produzione di acido lattico dell’esperimento IV meno quello dell’esperimento II (figura 2, F).

6.Cosa ci dicono questi esperimenti?

Non è immediato dedurre il significato di questi esperimenti, almeno per me. Tuttavia possiamo dire quanto segue.

  • Il consumo di ossigeno delle cellule muscolari esposte al siero dei pazienti è maggiore di quello del gruppo di controllo (esperimenti I-IV), e questo è apparentemente in disaccordo con quanto risulta dai test ergosirometrici nella ME/CFS, in cui il consumo di ossigeno sistemico – per watt erogato – è minore nei pazienti (Vanness, 2007), (Snell, 2013).
  • Stressando chimicamente la catena respiratoria (esperimenti III e IV) la produzione di acido lattico aumenta nella coltura esposta a siero di pazienti più di quanto non aumenti nel contollo. Forse questo è il dato più interessante, che potrebbe rispecchiare un blocco nel piruvato deidrogenasi indotto dal siero dei pazienti nella coltura cellulare.


Gli esperimenti in vitro di Fluge e colleghi dimostrano che nel siero dei pazienti ME/CFS è presente un fattore X (non noto) che:

  1. aumenta la capacità delle cellule di consumare ossigeno;
  2. aumenta la produzione di lattato in condizioni di aumentato fabbisogno energetico (simulate in provetta con inibitori della catena respiratoria).

La prima osservazione può indicare – secondo gli autori – la presenza di meccanismi di compenso attivati da messaggeri chimici contenuti nel sangue dei pazienti, che potenziano l’attività mitocondriale. La seconda osservazione sperimentale è in accordo con lo studio di Armstrong, che non rileva un aumento del lattato basale (Armstrong CW et al. 2015), e con osservazioni del gruppo norvegese (non ancora pubblicate) che indicano un aumento significatico di lattato dopo esercizio, rispetto ai controlli sani. L’aumento di lattato a seguito di esercizio è ciò che ci si aspetterebbe in presenza di un blocco del piruvato deidrogenasi. Quindi il fattore X (o i fattori?) contenuto nel siero dei pazienti è responsabile di due azioni, apparentemente opposte: da un lato potenzia i mitocondri, dall’altro fa aumentare la produzione di lattato. Questo potrebbe voler dire che:

  • nel siero dei pazienti è presente sia la causa dell’inibizione del piruvato deidrogenasi, che un fattore di compenso, che cerca di porre rimedio al difetto metabolico.

Questa è solo una delle interpretazioni possibili, ovviamente. Aggiungo che un aumento significativo del lattato dopo attività fisiche blande era stato segnalato in un precedente studio su un solo paziente, realizzato dal paziente stesso (Mark Vink 2015).

8.Un possibile test

Come abbiamo visto, nella ME/CFS il lattato basale sembra normale (Armstrong CW et al. 2015) e lo studio di Fluge e Mella – qui discusso – conferma questa dinamica anche con esperimenti in vitro. Tuttavia, a seguito di stress energetici, la produzione di lattato aumenta più di quanto ci si aspetterebbe normalmente, come già dimostrato da un paziente/ricercatore (Mark Vink 2015) e come evidenziato anche nello studio di Fluge e Mella, in vitro. Allora ho pensato che un possibile test in grado di rilevare questa dinamica metabolica potrebbe essere la misura di lattato e ammonio nel test da sforzo ischemico dell’avambraccio. In questo test viene fatta contrarre ripetutamente una mano del paziente (con una pallina morbida), essendo il flusso sanguigno bloccato con laccio emostatico. Dopo l’esercizio (che dura un minuto), diversi prelievi venosi vengono fatti nei successivi 10 minuti, con il laccio ancora stretto. Questi prelievi forniscono la produzione locale di lattato da parte dei muscoli scheletrici (Livingstone C et al. 2001). In figura 3 potete vedere l’esame di un paziente: il livello basale di lattato è perfettamente nella media, ma dopo 3 minuti la curva (in rosso) si discosta dal valore medio e sale oltre il valore massimo (anche se di poco). Questo tipo di andamento è coerente con quanto evidenziato in vitro da Fluge e Mella, e con la loro ipotesi sul piruvato deidrogenasi.

Figura 3. Curva lattato, dopo sforzo ischemico dell’avambraccio. In rosso il livello di acido lattico del paziente, che da un valore perfettamente normale, sale superando il valore massimo (anche se di poco).

In questo test si misura anche l’ammonio, come verifica del fatto che il paziente si sia ‘impegnato’ nell’esecuzione dello sforzo. Infatti l’ammonio è un prodotto del metabolismo energetico (specialmente anaerobico), secondo le seguenti reazioni:

  1. 2ADP –> ATP + AMP
  2.   AMP –> IMP + NH3

9.Il cavaluccio marino

Le misure di cui ho parlato in questo articolo sono state effettuate con il dispositivo Seahorse XFe96 della Agilent. Questo apparecchio permette di misurare in tempo reale il metabolismo energetico cellulare (ad esempio di linfociti) attraverso una misura del consumo di ossigeno (che fornisce una stima semplice del funzionamento mitocondriale) e la produzione di protoni (che si può ritenere una misura della glicolisi), in varie condizioni sprimentali. Video esplicativo.